Compartment temperature estimation of a multiple-layer cable tray fire with different cable arrangements in a closed compartment

2019 ◽  
Vol 37 (4-6) ◽  
pp. 303-319
Author(s):  
Xianjia Huang ◽  
Yuhong Wang ◽  
Wuyong Zeng ◽  
Lan Peng ◽  
Anthony CH Cheng ◽  
...  

Fire hazard analysis of multiple-layer cable tray is an important part of nuclear safety analysis. Large-scale cable fire experiments with a three-layer horizontal cable tray were conducted in a closed compartment. The vertical temperature profile in the middle of the room was acquired. Distinctive stratification phenomena were found in the vertical temperature distribution. The interface between the upper and lower layer was located at approximately the height of the top cable layer. Heat transfer between the smoke and compartment walls occurred mainly above the smoke interface. A modified non-steady energy balance model in a closed compartment which included the effect of smoke interface height was used to estimate the compartment temperatures. Compared with the experimental results, the modified model for the multiple-layer cable tray fire in a closed compartment provides better estimation than the original model.

2014 ◽  
Vol 44 (7) ◽  
pp. 1919-1940 ◽  
Author(s):  
T. Radko ◽  
D. Peixoto de Carvalho ◽  
J. Flanagan

Abstract A theoretical model is developed, which attempts to predict the lateral transport by mesoscale variability, generated and maintained by baroclinic instability of large-scale flows. The authors are particularly concerned by the role of secondary instabilities of primary baroclinically unstable modes in the saturation of their linear growth. Theory assumes that the fully developed equilibrium state is characterized by the comparable growth rates of primary and secondary instabilities. This assumption makes it possible to formulate an efficient algorithm for evaluating the equilibrium magnitude of mesoscale eddies as a function of the background parameters: vertical shear, stratification, beta effect, and bottom drag. The proposed technique is applied to two classical models of baroclinic instability—the Phillips two-layer model and the linearly stratified Eady model. Theory predicts that the eddy-driven lateral mixing rapidly intensifies with increasing shear and weakens when the beta effect is increased. The eddy transport is also sensitive to the stratification pattern, decreasing as the ratio of upper/lower layer depths in the Phillips model is decreased below unity. Theory is successfully tested by a series of direct numerical simulations that span a wide parameter range relevant for typical large-scale currents in the ocean. The spontaneous emergence of large-scale patterns induced by mesoscale variability, and their role in the cross-flow eddy transport, is examined using a suite of numerical simulations.


2015 ◽  
Vol 19 (9) ◽  
pp. 3845-3856 ◽  
Author(s):  
F. Todisco ◽  
L. Brocca ◽  
L. F. Termite ◽  
W. Wagner

Abstract. The potential of coupling soil moisture and a Universal Soil Loss Equation-based (USLE-based) model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e., the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008–2013. The results showed that including soil moisture observations in the event rainfall–runoff erosivity factor of the USLE enhances the capability of the model to account for variations in event soil losses, the soil moisture being an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to ~ 0.35 and a root mean square error (RMSE) of ~ 2.8 Mg ha−1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.


1978 ◽  
Vol 100 (3) ◽  
pp. 508-513 ◽  
Author(s):  
J. L. Hodges ◽  
R. C. Hoke ◽  
R. Bertrand

Data acquired in the Exxon Research and Engineering Company’s fluid bed boiler program indicate that the arrangement and orientation of internal boiler tubes has a strong effect on the measured bed temperature profile. Horizontally oriented tubes yield much steeper temperature gradients than do vertical tubes. Excessive vertical temperature gradients in coal fired fluid bed boilers can either limit coal feed rates or result in the formation of agglomerates of solid material which are destructive of bed internals. This study represents an attempt to understand the influence of orientation on vertical temperature profiles in fluid bed boilers. A back-mixing model for solids recirculation was developed and applied to the prediction of bed temperatures. Bubbling bed theory is not suitable for estimating solids circulation rates in pressurized beds of large particles with immersed tubes. However, by introducing the concept of a solids mixing height it was possible to estimate solid movement. The solids mixing height and vertical boiler tube dimensions were correlated in a manner which resulted in good agreement between theoretical and experimental bed temperature profiles. It is felt that this simple model may prove quite useful in the design of large scale commercial fluid bed boilers.


2017 ◽  
Vol 23 (4) ◽  
pp. 455-463 ◽  
Author(s):  
Weigang YAN ◽  
Lin JIANG ◽  
Weiguang AN ◽  
Yang ZHOU ◽  
Jinhua SUN

Buildings have U-shape façade designs for certain purposes such as lighting. However, such designs may lead to a higher fire hazard. In this paper, large scale experiments of upward flame spread over XPS insulation material were conducted to investigate the fire hazard of building’s U-shape façade wall geometry. Comparison to previous labora­tory scale experiments were also presented. Theoretical analysis was performed to reveal the mechanism of the U-shape geometry’s influences. It is found that such geometry design would increase the fire hazard of buildings: flame spread rate and flame height increased with U-shape’s geometrical factor. The results agreed with theoretical analysis. It is ex­pected that the buildings’ U-shape façade wall geometry would greatly benefit flame spread for full scale applications and increase the fire hazard. Thus engineers should be careful with such façade wall designs, especially for residential building designs.


2014 ◽  
Vol 955-959 ◽  
pp. 2425-2429 ◽  
Author(s):  
Yun Fei Li ◽  
Jian Guo Yang ◽  
Yan Yan Wang ◽  
Xiao Guo Wang

The purpose of this study is to construct a turbulent aggregation device which has specific performance for fine particle aggregation in flue gas. The device consists of two cylindrical pipes and an array of vanes. The pipes extending fully and normal to the gas stream induce large scale turbulence in the form of vortices, while the vanes downstream a certain distance from the pipes induce small one. The process of turbulent aggregation was numerically simulated by coupling the Eulerian multiphase model and population balance model together with a proposed aggregation kernel function taking the size and inertia of particles into account, and based on data of particles’ size distribution measured from the flue of one power plant. The results show that the large scale turbulence generated by pipes favours the aggregation of smaller particles (smaller than 1μm) notably, while the small scale turbulence benefits the aggregation of bigger particles (larger than 1μm) notably and enhances the uniformity of particle size distribution among different particle groups.


MAUSAM ◽  
2022 ◽  
Vol 53 (4) ◽  
pp. 539-542
Author(s):  
A. P. DIMRI ◽  
V. K. JAIN ◽  
B. B. DASH

2015 ◽  
Vol 3 (8) ◽  
pp. 4967-5013 ◽  
Author(s):  
H. Apel ◽  
O. M. Trepat ◽  
N. N. Hung ◽  
D. T. Chinh ◽  
B. Merz ◽  
...  

Abstract. Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas, and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either fluvial or pluvial flood hazard, studies of combined fluvial and pluvial flood hazard are hardly available. Thus this study aims at the analysis of fluvial and pluvial flood hazard individually, but also at developing a method for the analysis of combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as example. In this tropical environment the annual monsoon triggered floods of the Mekong River can coincide with heavy local convective precipitation events causing both fluvial and pluvial flooding at the same time. Fluvial flood hazard was estimated with a copula based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. Pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data, and a stochastic rain storm generator. Inundation was simulated by a 2-dimensional hydrodynamic model implemented on a Graphical Processor Unit (GPU) for time-efficient flood propagation modelling. All hazards – fluvial, pluvial and combined – were accompanied by an uncertainty estimation considering the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and ways for their usage in flood risk management are outlined.


1983 ◽  
Vol 14 (4) ◽  
pp. 239-254 ◽  
Author(s):  
Jörgen Sahlberg

A one-dimensional hydrodynamical model is used for simulating the vertical temperature profile in a lake during cooling conditions. The vertical mixing rate is calculated by solving the equations for turbulent kinetic energy, k, and dissipation of energy, ε. The heat exchange between the water and atmosphere consists of the radiation fluxes, sensible and latent heat flux. Temperature measurements from Lake Väsman during November-December, 1981, were used in the verification study. The agreement between calculated and measured temperature profiles is very good. This indicates that both the mixing processes and the net heat flux are well described in the model.


Sign in / Sign up

Export Citation Format

Share Document