Use of Multiphase CT Protocols in 18 Countries: Appropriateness and Radiation Doses

2020 ◽  
pp. 084653711988839 ◽  
Author(s):  
Shivam Rastogi ◽  
Ramandeep Singh ◽  
Riddhi Borse ◽  
Petra Valkovic Zujic ◽  
Doris Segota ◽  
...  

Purpose: To assess the frequency, appropriateness, and radiation doses associated with multiphase computed tomography (CT) protocols for routine chest and abdomen–pelvis examinations in 18 countries. Materials and Methods: In collaboration with the International Atomic Energy Agency, multi-institutional data on clinical indications, number of scan phases, scan parameters, and radiation dose descriptors (CT dose–index volume; dose–length product [DLP]) were collected for routine chest (n = 1706 patients) and abdomen–pelvis (n = 426 patients) CT from 18 institutions in Asia, Africa, and Europe. Two radiologists scored the need for each phase based on clinical indications (1 = not indicated, 2 = probably indicated, 3 = indicated). We surveyed 11 institutions for their practice regarding single-phase and multiphase CT examinations. Data were analyzed with the Student t test. Results: Most institutions use multiphase protocols for routine chest (10/18 institutions) and routine abdomen–pelvis (10/11 institutions that supplied data for abdomen–pelvis) CT examinations. Most institutions (10/11) do not modify scan parameters between different scan phases. Respective total DLP for 1-, 2-, and 3-phase routine chest CT was 272, 518, and 820 mGy·cm, respectively. Corresponding values for 1- to 5-phase routine abdomen–pelvis CT were 400, 726, 1218, 1214, and 1458 mGy cm, respectively. For multiphase CT protocols, there were no differences in scan parameters and radiation doses between different phases for either chest or abdomen–pelvis CT ( P = 0.40-0.99). Multiphase CT examinations were unnecessary in 100% of routine chest CT and in 63% of routine abdomen–pelvis CT examinations. Conclusions: Multiphase scan protocols for the routine chest and abdomen–pelvis CT examinations are unnecessary, and their use increases radiation dose.

Author(s):  
Monica Bernardo ◽  
Fatemeh Homayounieh ◽  
Maria Cristina Rodel Cuter ◽  
Luiz Mário Bellegard ◽  
Homero Medeiros Oliveira Junior ◽  
...  

Abstract We assessed variations in chest CT usage, radiation dose and image quality in COVID-19 pneumonia. Our study included all chest CT exams performed in 533 patients from 6 healthcare sites from Brazil. We recorded patients’ age, gender and body weight and the information number of CT exams per patient, scan parameters and radiation doses (volume CT dose index—CTDIvol and dose length product—DLP). Six radiologists assessed all chest CT exams for the type of pulmonary findings and classified CT appearance of COVID-19 pneumonia as typical, indeterminate, atypical or negative. In addition, each CT was assessed for diagnostic quality (optimal or suboptimal) and presence of artefacts. Artefacts were frequent (367/841), often related to respiratory motion (344/367 chest CT exams with artefacts) and resulted in suboptimal evaluation in mid-to-lower lungs (176/344) or the entire lung (31/344). There were substantial differences in CT usage, patient weight, CTDIvol and DLP across the participating sites.


2021 ◽  
Vol 17 (3) ◽  
pp. 216-221
Author(s):  
Fawad Yasin ◽  
Anum Rasheed ◽  
Muhammad Nauman Malik ◽  
Farheen Raza ◽  
Ramish Riaz ◽  
...  

OBJECTIVE - The purpose of this study was to assess the radiation dose levels from common computed tomography (CT) examinations performed in Radiology Department of Pakistan Institute of Medical Sciences (PIMS), and evaluate these according to diagnostic reference levels (DRLs) proposed by European Commission (EC) guidelines, and thus contributing towards the establishment of local and national DRLs. To the best of our knowledge, this is the first study of its kind to explore radiation doses from CT examinations in Pakistan. STUDY DESIGN - This was a quantitative study conducted at PIMS, Islamabad, spanning a duration of eight weeks. Scan parameters and dose profile data of 1506 adults undergoing examinations of head, neck, chest and abdomen-pelvis regions, comprising of single- and multi-phase, contrast-enhanced and unenhanced studies. Dose indicators utilized by EC guidelines for DRLs include volume CT dose index (CTDIvol) and Dose Length Product (DLP) for single slice and complete examination radiation doses, respectively. METHOD - Values of CTDIvol, DLP and scan lengths were extracted from the CT operators console. Other control variables included gender, contrast enhancement and phasicity of study. IBM SPSS package was used to obtain descriptive statistics such as mean and quartiles. RESULTS - DRLs calculated as 75th percentile of CTDIvol, DLP for various anatomical regions are by and far comparable to European DRLs. CONCLUSION – This study describes institutional diagnostic reference levels for common CT exams in Islamabad and provides benchmark values for future reference. Our DRL values are mostly comparable to European and international DRLs. Similar, albeit large scale, surveys are recommended for establishment of local and national DRLs, eventually contributing towards development of regional DRLs. KEYWORDS: CTDIvol, DLP, Diagnostic Reference Levels, Computed Tomography, Radiation Monitoring, Scan length


Author(s):  
Denise Bos ◽  
Britta König ◽  
Sebastian Blex ◽  
Sebastian Zensen ◽  
Marcel Opitz ◽  
...  

Abstract The aim of this phantom study is to examine radiation doses of dual- and single-energy computed tomography (DECT and SECT) in the chest and upper abdomen for three different multi-slice CT scanners. A total of 34 CT protocols were examined with the phantom N1 LUNGMAN. Four different CT examination types of different anatomic regions were performed both in single- and dual-energy technique: chest, aorta, pulmonary arteries for suspected pulmonary embolism and liver. Radiation doses were examined for the CT dose index CTDIvol and dose-length product (DLP). Radiation doses of DECT were significantly higher than doses for SECT. In terms of CTDIvol, radiation doses were 1.1–3.2 times higher, and in terms of DLP, these were 1.1–3.8 times higher for DECT compared with SECT. The third-generation dual-source CT applied the lowest dose in 7 of 15 different examination types of different anatomic regions.


2021 ◽  
Vol 23 (2) ◽  
pp. 87-93
Author(s):  
Bharat Bhusan Sharma ◽  
Nitish Virmane ◽  
Navreet Boora ◽  
Mir Rizwan Aziz ◽  
Arshad Alam Khan ◽  
...  

Non-contrast computerized tomography (NCCT) is in rampant use in daily practice for the diagnosis of various chest diseases. In the era of COVID-19 pandemic, the use of chest NCCT has increased many fold. The reason was because it will resolve many issues and quick diagnosis can be made. The same was also required to see the behavior of the disease as well as in the follow-up. Basically two parameter are in use to described the amount of radiation dose received by the patient in volumetric CT. These are, one is CT Dose Index (CTDIvol) & its unit is mGy, and the second is dose length product (DLP). With normal pitch factor i.e. 1, the CTDIw is use on the description of CTDIvol. Multiplication of scan length and CTDIvol parameter is known as Dose Length Product (DLP). There was much concern about the radiation dose received by the individual. A total of twenty-six individuals were studied. The measurement of direct chest circumference before each CT chest examination and correlation of CT chest protocol parameter in combination use was an effective tool to reduce the amount of radiation dose in patients. Chest circumference values can also be correlated with body mass index (BMI) values for more accuracy in the reduction of radiation dose. Lower chest circumference patients should be irradiated with the least amount of radiation dose and so on.


Dose-Response ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 155932582097313
Author(s):  
Dario Baldi ◽  
Liberatore Tramontano ◽  
Vincenzo Alfano ◽  
Bruna Punzo ◽  
Carlo Cavaliere ◽  
...  

For decades, the main imaging tool for multiple myeloma (MM) patient’s management has been the conventional skeleton survey. In 2014 international myeloma working group defined the advantages of the whole-body low dose computed tomography (WBLDCT) as a gold standard, among imaging modalities, for bone disease assessment and subsequently implemented this technique in the MM diagnostic workflow. The aim of this study is to investigate, in a group of 30 patients with a new diagnosis of MM, the radiation dose (CT dose index, dose-length product, effective dose), the subjective image quality score and osseous/extra-osseous findings rate with a modified WBLDCT protocol. Spectral shaping and third-generation dual-source multidetector CT scanner was used for the assessment of osteolytic lesions due to MM, and the dose exposure was compared with the literature findings reported until 2020. Mean radiation dose parameters were reported as follows: CT dose index 0.3 ± 0.1 mGy, Dose-Length Product 52.0 ± 22.5 mGy*cm, effective dose 0.44 ± 0.19 mSv. Subjective image quality was good/excellent in all subjects. 11/30 patients showed osteolytic lesions, with a percentage of extra-osseous findings detected in 9/30 patients. Our data confirmed the advantages of WBLDCT in the diagnosis of patients with MM, reporting an effective dose for our protocol as the lowest among previous literature findings.


2014 ◽  
Vol 4 ◽  
pp. 38 ◽  
Author(s):  
Lukas Ebner ◽  
Felix Knobloch ◽  
Adrian Huber ◽  
Julia Landau ◽  
Daniel Ott ◽  
...  

Objective: The aim of the present study was to evaluate a dose reduction in contrast-enhanced chest computed tomography (CT) by comparing the three latest generations of Siemens CT scanners used in clinical practice. We analyzed the amount of radiation used with filtered back projection (FBP) and an iterative reconstruction (IR) algorithm to yield the same image quality. Furthermore, the influence on the radiation dose of the most recent integrated circuit detector (ICD; Stellar detector, Siemens Healthcare, Erlangen, Germany) was investigated. Materials and Methods: 136 Patients were included. Scan parameters were set to a thorax routine: SOMATOM Sensation 64 (FBP), SOMATOM Definition Flash (IR), and SOMATOM Definition Edge (ICD and IR). Tube current was set constantly to the reference level of 100 mA automated tube current modulation using reference milliamperes. Care kV was used on the Flash and Edge scanner, while tube potential was individually selected between 100 and 140 kVp by the medical technologists at the SOMATOM Sensation. Quality assessment was performed on soft-tissue kernel reconstruction. Dose was represented by the dose length product. Results: Dose-length product (DLP) with FBP for the average chest CT was 308 mGy*cm ± 99.6. In contrast, the DLP for the chest CT with IR algorithm was 196.8 mGy*cm ± 68.8 (P = 0.0001). Further decline in dose can be noted with IR and the ICD: DLP: 166.4 mGy*cm ± 54.5 (P = 0.033). The dose reduction compared to FBP was 36.1% with IR and 45.6% with IR/ICD. Signal-to-noise ratio (SNR) was favorable in the aorta, bone, and soft tissue for IR/ICD in combination compared to FBP (the P values ranged from 0.003 to 0.048). Overall contrast-to-noise ratio (CNR) improved with declining DLP. Conclusion: The most recent technical developments, namely IR in combination with integrated circuit detectors, can significantly lower radiation dose in chest CT examinations.


2020 ◽  
Author(s):  
Dechuan Zhang ◽  
Longling Fan ◽  
Xuqian Liang ◽  
Teiying Yin ◽  
Qigen Li ◽  
...  

Abstract Objective To explore the influence of patient’s individual factors on the radiation dose in chest computed tomography (CT) scan. Methods Based on the clinical chest CT scan scheme and the scanning conditions were unified, Basic data of 103 patients who underwent chest CT scanning, including gender, age, height, weight and underlying diseases, were prospectively collected, and the dose length product (DLP) of each patient was recorded, Multivariate regression analysis was made on the obtained data. Results Under the same scanning parameters, image quality had no significant effect on chest CT radiation dose (P = 0.404 > 0.05); among the 103 cases, there were 20 kinds of basic diseases, only calcified lesion has a significant effect on chest CT radiation dose (P = 0.009 < 0.05), the other had no significant effects (P > 0.05); the major effect individual factors of radiation dose in CT scan were: gender (P = 0.000003 < 0.05), age (P = 0.016 < 0.05), height (P = 0.000021 < 0.05), weight (P = 4.30E-16 < 0.05). Age (P = 8.08E-8 < 0.05) and weight (P = 5.52E-21 < 0.05) were the only decisive factors in multiple regression analysis, while other influencing factors were not decisive (P > 0.05). The regression model was as follows: DLP=-39.45 + 2.19*age + 5.54*weight, the coefficient of multiple correlation R being 0.786, F(2,100) = 77.128, P < 0.01. Mean that gradually increase in age was related with 2.19 mGy∙cm increase in the DLP value, 1 kg increase in weight was associated with 5.54 mGy∙cm increase in the DLP value. Conclusion For chest CT, age and weight are the major impact individual factors of radiation dose. This model has shown obvious clinical significance and can provide solid theoretical basis for clinical application in reducing the radiation dose in chest CT.


Author(s):  
Mohammed Ahmed Ali Omer

Background: A retrospective study presenting the endemic orbital infection (cellulitis) that breakout during dusty storm season; aiming to ascertain and showing the precedence of MRI for diagnosis of orbital infection rather than CT and revealing the diagnostic abilities of cross-sectional matrices spectrum.Methods: Based on retrospective collection of diagnostics (CT and MRI) information for randomly selected patients with cellulitis and the targeting the relevant data (image interpretation, exposure dose (DLP and CTDIvol), age, BMI and matrix cross-section spectrum findings).Results: The exposure dose of orbital CT exam was 59.4 (mGy) as CT dose index (CTDIvol) and 917.3 (mGy/cm) as dose length product (DLP) that increase by increment of age and BMI. The obese patients only exposed to dose exceeding the National Diagnostic Reference by 2.8%. MRI confirmed the inflammation around the optic nerve and extension to posterio-inferior portion of the globe and affecting the optic nerve with left sided proptosis (0.5cm) better than CT. The cross-sectional matrix successfully revealed that: the Lt optic nerve’s gray value (density) increases by a factor of 17.7 (a u) and enlarged by 5 pixels greater than the Rt optic nerve. Thickening, rough surface increased gray value by 30.5 (a u), muco-thickening and choncheal enlargement at the medial boarder of Lt orbit as 10.0 pixel and Lt eye ball enlarged by a factor of 10.9 pixels.Conclusions: MRI wisely diagnose orbital infection with more details and overcoming patient radiation exposure and usage of image spectrum gives detailed characterization of lesion morphology.


Sign in / Sign up

Export Citation Format

Share Document