Polyimide nanocomposites with functionalized graphene sheets

2017 ◽  
Vol 31 (6) ◽  
pp. 837-861 ◽  
Author(s):  
Jin-Hae Chang

Polyimide (PI) nanocomposites containing two different functionalized graphene sheets (FGSs) were synthesized, and their thermal properties, morphology, oxygen permeability, and electrical conductivity were compared. Hexadecylamine–graphene sheets and 4-amino- N-hexadecylbenzamide–graphene sheets were utilized. Hybrid films were obtained from blended solutions of PI and FGSs, with the filler content with respect to the PI varying from 0 wt% to 10 wt%. The differences in the properties of the PI matrix were then analyzed with respect to filler content. Transmission electron microscopy analysis confirmed that the two FGSs were dispersed homogeneously throughout the polymer matrix, although some FGS aggregates were also formed. Furthermore, it was observed that the addition of small amounts of FGS nanofiller was sufficient to improve the coefficient of thermal expansion, the gas barrier properties, and the electrical conductivity of the hybrid films. In contrast, the glass transition temperature and the initial decomposition temperature of the PI hybrid films continued to decrease with increasing FGS content.

Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 323 ◽  
Author(s):  
Jin-Hae Chang

Poly(vinyl alcohol) (PVA) nanocomposites containing three different nanofillers are prepared and compared in terms of their thermal properties, morphologies, and oxygen permeabilities. Specifically, pristine saponite (SPT) clay, hydrophilic organically modified bentonite (OMB), and hexadecylamine-functionalized graphene sheets (HDA-GSs) are utilized as nanofillers to fabricate PVA nanocomposite films. The hybrid films are fabricated from blended solutions of PVA and the three different nanofillers. The content of each filler with respect to PVA is varied from 0 to 10 wt%, and the changes in the properties of the PVA matrices as a function of the filler content are discussed. With respect to the hybrid containing 5 wt% of SPT, OMB, and HDA-GS, each layer in the polymer matrix consists of well-dispersed individual nanofiller layers. However, the fillers are mainly aggregated in the polymer matrix in a manner similar to the case for the hybrid material containing 10 wt% of fillers. In the thermal properties, SPT and OMB are most effective when the filler corresponds to 5 wt% and 7 wt% for HDA-GS, respectively, and the gas barrier is most effective with respect to 5 wt% content in all fillers. Among the three types of nanofillers that are investigated, OMB exhibits optimal results in terms of thermal stability and the gas barrier effect.


2011 ◽  
Vol 410 ◽  
pp. 152-155 ◽  
Author(s):  
Tapas Kuila ◽  
Bong Joo Jung ◽  
Xiao Fei Yi ◽  
Joong Hee Lee

The nanocomposites containing linear low density polyethylene (LLDPE) and dodecyl amine (DA) modified graphene (DA-G) as nanofiller have been prepared by solution-mixing method and characterized. Transmission electron microscopy analysis of the nanocomposites exhibits homogeneous dispersion of graphene in the LLDPE matrix. Thermal stability of the nanocomposites with 1 wt.% DA-G are superior as compared to neat LLDPE. Gas barrier properties of the nanocomposites are also much better than that of the neat LLPDE. Co-efficient of thermal expansion values of the nanocomposites decreases with the addition of functionalized graphene. Keywords: Functionalized graphene; UV-Vis spectra; Nanocomposites; Gas barrier property; Mechanical property


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1875
Author(s):  
Alexander Yu. Gerasimenko ◽  
Artem V. Kuksin ◽  
Yury P. Shaman ◽  
Evgeny P. Kitsyuk ◽  
Yulia O. Fedorova ◽  
...  

A technology for the formation of electrically conductive nanostructures from single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), and their hybrids with reduced graphene oxide (rGO) on Si substrate has been developed. Under the action of single pulses of laser irradiation, nanowelding of SWCNT and MWCNT nanotubes with graphene sheets was obtained. Dependences of electromagnetic wave absorption by films of short and long nanotubes with subnanometer and nanometer diameters on wavelength are calculated. It was determined from dependences that absorption maxima of various types of nanotubes are in the wavelength region of about 266 nm. It was found that contact between nanotube and graphene was formed in time up to 400 fs. Formation of networks of SWCNT/MWCNT and their hybrids with rGO at threshold energy densities of 0.3/0.5 J/cm2 is shown. With an increase in energy density above the threshold value, formation of amorphous carbon nanoinclusions on the surface of nanotubes was demonstrated. For all films, except the MWCNT film, an increase in defectiveness after laser irradiation was obtained, which is associated with appearance of C–C bonds with neighboring nanotubes or graphene sheets. CNTs played the role of bridges connecting graphene sheets. Laser-synthesized hybrid nanostructures demonstrated the highest hardness compared to pure nanotubes. Maximum hardness (52.7 GPa) was obtained for MWCNT/rGO topology. Regularity of an increase in electrical conductivity of nanostructures after laser irradiation has been established for films made of all nanomaterials. Hybrid structures of nanotubes and graphene sheets have the highest electrical conductivity compared to networks of pure nanotubes. Maximum electrical conductivity was obtained for MWCNT/rGO hybrid structure (~22.6 kS/m). Networks of nanotubes and CNT/rGO hybrids can be used to form strong electrically conductive interconnections in nanoelectronics, as well as to create components for flexible electronics and bioelectronics, including intelligent wearable devices (IWDs).


2010 ◽  
Vol 150-151 ◽  
pp. 1500-1503 ◽  
Author(s):  
Hong Chi Zhao ◽  
Qi Li ◽  
Wen Yu Xu ◽  
Fan Huang

Polyvinylamine (PVAm) and polyvinylamine chloride (PVAm•HCl) were synthesized by Hofmann degradation of polyacrylamide (PAM). The reaction condition is gentle and the operation is safe, simple and economical so that it is a good reaction method. The chemical structures and thermal properties of the polymers were studied by Fourier transform infrared spectrometer (FTIR), nuclear magnetic resonance spectrometer (NMR), X-ray diffractmeter (XRD) and thermogravimetric analyzer (TGA). Synthesis of PVAm•HCl was confirmed by the intensities of the characteristic peak of -CONH2 decreased and the appearance of a new absorption peak at 1530cm-1 (due to N-H bond of -NH3+ ) in the FTIR spectrum, the appearance of the characteristic absorption peaks of carbon atoms in the 13C NMR spectrum, the appearance of chemical shift assignments of proton in 1H NMR spectrum and the appearance of characteristic dispersing diffraction peak between 22.5° to 25.2° in the XRD spectrum, respectively. PAM had three decomposing stages, but PVAm•HCl had two decomposing stages. TG curve of PAM and PVAm•HCl showed that the initial decomposition temperature were 190oC and 140oC, respectively. The thermal stability of PVAm•HCl was poorer than that of PAM.


2011 ◽  
Vol 239-242 ◽  
pp. 2679-2682 ◽  
Author(s):  
Rub Nawaz Shahid ◽  
Bin Awais Hasan ◽  
Fahad Ali ◽  
Naeem Ul Haq Tariq

In this work percolation range for Al2O3-Ni interpenetrating phase composite (IPC) was studied to find the optimal combination of electrical conductivity and coefficient of thermal expansion (CTE). The impedance spectroscopy and scanning electron spectroscopy were used to study the percolation limit.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Yiping Shang ◽  
Wu Yang ◽  
Yabei Xu ◽  
Siru Pan ◽  
Huayu Wang ◽  
...  

In this study, few-layered tungsten disulfide (WS2) was prepared using a liquid phase exfoliation (LPE) method, and its thermal catalytic effects on an important kind of energetic salts, dihydroxylammonium-5,5′-bistetrazole-1,1′-diolate (TKX-50), were investigated. Few-layered WS2 nanosheets were obtained successfully from LPE process. And the effects of the catalytic activity of the bulk and few-layered WS2 on the thermal decomposition behavior of TKX-50 were studied by using synchronous thermal analysis (STA). Moreover, the thermal analysis data was analyzed furtherly by using the thermokinetic software AKTS. The results showed the WS2 materials had an intrinsic thermal catalysis performance for TKX-50 thermal decomposition. With the few-layered WS2 added, the initial decomposition temperature and activation energy (Ea) of TKX-50 had been decreased more efficiently. A possible thermal catalysis decomposition mechanism was proposed based on WS2. Two dimensional-layered semiconductor WS2 materials under thermal excitation can promote the primary decomposition of TKX-50 by enhancing the H-transfer progress.


Sign in / Sign up

Export Citation Format

Share Document