Mechanical properties and morphologies of polypropylene composites synergistically reinforced-toughened by styrene–butadiene rubber and graphene oxide nanosheets

2019 ◽  
Vol 33 (3) ◽  
pp. 413-431
Author(s):  
Zhengjun Wang ◽  
Yi Guo ◽  
Lei Yan ◽  
Jun Bian ◽  
Hongcai Liu ◽  
...  

Chemically reduced graphene (C- rGO) nanosheets were first prepared from graphene oxide (GO), and then the polypropylene (PP) composites synergistically reinforced–toughened by styrene–butadiene rubber (SBR), and C- rGO nanosheets were fabricated via melt blending. The mechanical properties of PP can be considerably improved by synergistically filling with C- rGO nanosheets and SBR, especially for the notched Izod impact strength (IS). The results from the X-ray diffraction, polarizing optical micrographs, scanning electron microscope, differential scanning calorimetric, dynamic mechanical analysis, and thermogravimetric analysis measurements reveal that: (1) the β-phase crystal structure of the PP is formed when the C- rGO and SBR are synergistically filled with PP and its formation plays a role for the enhancement of the impact strength for PP/SBR/C- rGO composites; (2) the dispersion of the C- rGO and SBR in the PP/SBR/C- rGO composites is homogeneous, indicating that synergistic incorporating method decreases the aggregation of nanosheets and thus increases the sites for dissipation of shock for impact energy in the PP/SBR/C- rGO composites; and (3) the thermal analysis shows high thermal stability for the PP/SBR/C- rGO composites.

Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 519
Author(s):  
Vitalii Bezgin ◽  
Agata Dudek ◽  
Adam Gnatowski

This paper proposes and presents the chemical modification of linear hydroxyethers (LHE) with different molecular weights (380, 640, and 1830 g/mol) with the addition of three types of rubbers (polysulfide rubber (PSR), polychloroprene rubber (PCR), and styrene-butadiene rubber (SBR)). The main purpose of choosing this type of modification and the materials used was the possibility to use it in industrial settings. The modification process was conducted for a very wide range of modifier additions (rubber) per 100 g LHE. The materials obtained in the study were subjected to strength tests in order to determine the effect of the modification on functional properties. Mechanical properties of the modified materials were improved after the application of the modifier (rubber) to polyhydroxyether (up to certain modifier content). The most favorable changes in the tested materials were registered in the modification of LHE-1830 with PSR. In the case of LHE-380 and LHE-640 modified in cyclohexanol (CH) and chloroform (CF) solutions, an increase in the values of the tested properties was also obtained, but to a lesser extent than for LHE-1830. The largest changes were registered for LHE-1830 with PSR in CH solution: from 12.1 to 15.3 MPa for compressive strength tests, from 0.8 to 1.5 MPa for tensile testing, from 0.8 to 14.7 MPa for shear strength, and from 1% to 6.5% for the maximum elongation. The analysis of the available literature showed that the modification proposed by the authors has not yet been presented in any previous scientific paper.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2413
Author(s):  
Mariapaola Staropoli ◽  
Vincent Rogé ◽  
Enzo Moretto ◽  
Joffrey Didierjean ◽  
Marc Michel ◽  
...  

The improvement of mechanical properties of polymer-based nanocomposites is usually obtained through a strong polymer–silica interaction. Most often, precipitated silica nanoparticles are used as filler. In this work, we study the synergetic effect occurring between dual silica-based fillers in a styrene-butadiene rubber (SBR)/polybutadiene (PBD) rubber matrix. Precipitated Highly Dispersed Silica (HDS) nanoparticles (10 nm) have been associated with spherical Stöber silica nanoparticles (250 nm) and anisotropic nano-Sepiolite. By imaging filler at nano scale through Scanning Transmission Electron Microscopy, we have shown that anisotropic fillers align only in presence of a critical amount of HDS. The dynamic mechanical analysis of rubber compounds confirms that this alignment leads to a stiffer nanocomposite when compared to Sepiolite alone. On the contrary, spherical 250 nm nanoparticles inhibit percolation network and reduce the nanocomposite stiffness.


2010 ◽  
Vol 2 (2) ◽  
Author(s):  
Dwi Wahyuni

High impact polystyrene (HIPS) is the widely used material now, and also for the aerospace material as a communication instrument system and an electrical insulation. In order to produce HIPS, there are a view method which can be executed. In this case, the research is executed by the copolymerization processes of styrene butadiene rubber (SBR) solution in styrene. Variables which influence to the result properties (HIPS) are the SBR to styrene ratio, the solvent (ethyl benzene), the benzoyl peroxide initiator (BPO). The properties of the product are tensile strength, impact strength, softening point, melting point and the hardness. The result showed that the properties of the HIPS product was near of the HIPS high heat. The optimal processes condition was the solvent to the styrene monomer ratio was 0.05492, the SBR to the styrene ratio was 0.1236 and the BPO to the styrene ratio was 0,0003. The properties of the HIPS product were: the impact strength was (519-1215) N per cm, the tensil strength not more than was 106 N per cm, the elongation was (36-54) percent and the hardness was (65-69) shore A. This properties achieved at the mixing polymerization processes 4 scale in 11-12 hours, the early mixing at 4 scale 1 hours, the cutting chain 2 drops.


Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 486 ◽  
Author(s):  
Elkid Cobani ◽  
Irene Tagliaro ◽  
Marco Geppi ◽  
Luca Giannini ◽  
Philippe Leclère ◽  
...  

Sepiolite (Sep)–styrene butadiene rubber (SBR) nanocomposites were prepared by using nano-sized sepiolite (NS-SepS9) fibers, obtained by applying a controlled surface acid treatment, also in the presence of a silane coupling agent (NS-SilSepS9). Sep/SBR nanocomposites were used as a model to study the influence of the modified sepiolite filler on the formation of immobilized rubber at the clay-rubber interface and the role of a self-assembled nanostructure in tuning the mechanical properties. A detailed investigation at the macro and nanoscale of such self-assembled structures was performed in terms of the organization and networking of Sep fibers in the rubber matrix, the nature of both the filler–filler and filler–rubber interactions, and the impact of these features on the reduced dissipative phenomena. An integrated multi-technique approach, based on dynamic measurements, nuclear magnetic resonance analysis, and morphological investigation, assessed that the macroscopic mechanical properties of clay nanocomposites can be remarkably enhanced by self-assembled filler structures, whose formation can be favored by manipulating the chemistry at the hybrid interfaces between the clay particles and the polymers.


2014 ◽  
Vol 979 ◽  
pp. 139-142 ◽  
Author(s):  
Pornsri Pakeyangkoon ◽  
Surakit Tuampoemsab ◽  
Thritima Sritapunya ◽  
Apaipan Rattanapan

The improvement in impact properties of wood plastic composite from acrylate-styrene-acrylonitrile (ASA) and bagasse was reported in this work. The effect of type and content of impact modifier by using styrene-butadiene-rubber (SBR) and ethylene-acrylic acid (EAA) as impact modifier on morphology and mechanical properties of wood plastic composite were investigated. Wood plastic composites, prepared from ASA and 50 phr of bagasse by varying amount of impact modifier (both SBR and EAA) from 0-40 wt% of ASA were prepared by melt-blending technique. All materials were mixed by using a two-roll-mill, shaped into sheets by a compression molding machine and specimens were cut with a cutting machine. Then, the obtained materials were characterized, including morphology, impact strength and flexural properties. From SEM micrographs showed that wood plastic composites with using SBR as impact modifier showed more compatible with ASA matrix than EAA. This is a consistency results with mechanical properties such as impact properties, which indicated that the impact strength was improved with increasing the amount of SBR from 0-40 wt% of ASA. However, wood plastic composite with EAA showed the reduction of impact strength. So, it could be demonstrated from this study that the most appropriate impact modifier for wood plastic composite from ASA and bagasse was styrene-butadiene-rubber.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1025
Author(s):  
Songhan Wan ◽  
Xiaobin Lu ◽  
Hongguo Zhao ◽  
Songbo Chen ◽  
Shuwei Cai ◽  
...  

Graphene oxide (GO) was modified by p-phenylenediamine (PPD), aiming at improving the wet-skid resistance and reduce the rolling loss of solution polymerized styrene-butadiene rubber (SSBR). PPD with amino groups enabled GO to obtain anti-aging function. The structure of modified GO (PPD-GO) was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Raman spectroscopy. Mechanical tests showed that the mechanical properties of SSBR before and after aging were improved by adding PPD-GO. The results of thermogravimetric-differential scanning calorimeter synchronization analysis (TGA-DSC) indicated that SSBR/PPD-GO obtained good thermo-oxidative stability. The dynamic mechanical analysis (DMA) of SSBR composites showed that the mechanical loss factor (tanδ) peak moved to high temperature with the content of PPD-GO. The tanδ values of SSBR composites showed that it had a good effect on improving the wet-skid resistance and reducing the rolling loss of SSBR by adjusting the content of PPD-GO. In particular, with the addition of 4 phr GO, SSBR was effectively improved in mechanical properties, aging resistance, wet-skid resistance and low rolling loss.


Sign in / Sign up

Export Citation Format

Share Document