The fatigue behavior of polymeric sulfur-modified asphalt mixtures subjected to freeze-thaw conditioning

2019 ◽  
pp. 089270571988998 ◽  
Author(s):  
Amir Kavussi ◽  
Mehdi Azarnia ◽  
Pooyan Ayar ◽  
Makan Pedram

Abundance, affordability, and also the usability of sulfur as a part of the binder are the main reasons for using this additive in asphalt mixtures. However, lack of proper adhesion and brittle behavior of sulfur-modified asphalt mixtures could make them susceptible to moisture damage and fatigue cracking. In this regard, anti-stripping agents and some polymers like crumb rubber may be used to overcome these types of distresses. This research aimed at investigating the effects of polymeric sulfur and crumb rubber on the moisture sensitivity and fatigue behavior of asphalt mixtures. To this end, asphalt mixtures were subjected to 1 and 3 freeze-thaw cycles. Then, an indirect tensile fatigue test was carried out. Moreover, the response surface method (RSM) was used to assess the interaction between various parameters in samples containing polymeric sulfur and crumb rubber. Results showed that with an increase in polymeric sulfur content, the fatigue life was reduced and the moisture sensitivity was increased. Additionally, the RSM was found to be effective in ranking parameters influencing the performance of asphalt mixtures. According to the experimental results, a crumb rubber-modified binder could improve the fatigue life of the polymeric sulfur-modified mixture up to 70%. Furthermore, experimental results and RSM analysis indicated that crumb rubber would be more effective in higher numbers of freeze-thaw cycles and raised temperatures, in which polymeric sulfur-modified asphalt mixtures are probably prone to moisture damages (i.e. the lack of adequate cohesion and adhesion).

Author(s):  
H. Barry Takallou ◽  
Hussain U. Bahia ◽  
Dario Perdomo ◽  
Robert Schwartz

The effect of different mixing times and mixing temperatures on the performance of asphalt-rubber binder was evaluated. Four different types of asphalt-rubber binders and neat asphalt were characterized using the Strategic Highway Research Program (SHRP) binder method tests. Subsequently, mix designs were carried out using both the SHRP Levels I and II mix design procedures, as well as the traditional Marshall mix design scheme. Additionally, performance testing was carried out on the mixtures using the Superpave repetitive simple shear test at constant height (RSST-CH) to evaluate the resistance to permanent deformation (rutting) of the rubberized asphalt mixtures. Also, six rectangular beams were subjected to repeated bending in the fatigue tester at different microstrain levels to establish rubberized asphalt mixtures’ resistance to fatigue cracking under repeated loadings. The results indicate that the Superpave mix design produced asphalt-rubber contents that are significantly higher than values used successfully in the field. Marshall-used gyratory compaction could not produce the same densification trends. Superpave mixture analysis testing (Level II) was used successfully for rubberized asphalt mixtures. Results clearly indicated that the mixture selected exhibited acceptable rutting and fatigue behavior for typical new construction and for overlay design. Few problems were encountered in running the Superpave models. The results of the RSST-CH indicate that rubber-modified asphalt concrete meets the criteria for a maximum rut depth of 0.5 in.; and more consistent results were measured for fatigue performance analysis using the repeated four-point bending beam testing (Superpave optional torture testing). The cycles to failure were approximately 26,000 at 600 microstrain.


2021 ◽  
Vol 54 (5) ◽  
Author(s):  
M. Bueno ◽  
R. Haag ◽  
N. Heeb ◽  
P. Mikhailenko ◽  
L. Boesiger ◽  
...  

AbstractIncorporating crumb rubber (CR) using the dry process, directly in the asphalt mixture rather than into the bituminous binder requires no plant retrofitting, and therefore is the most practical industrial method for CR incorporation into asphalt mixtures. Nevertheless, very few large scale studies have been conducted. This work uses a holistic approach and reports on the functional and environmental performance of asphalt mixtures with different concentrations of CR fabricated employing the dry process in asphalt plants. Gaseous emissions were monitored during the production and laboratory leaching tests simulating the release of pollutants during rain, was conducted to evaluate the toxicology of both the CR material alone and the modified asphalt mixtures. In addition, laboratory compacted samples were tested to assess their fatigue behavior. Furthermore, noise relevant surface properties of large roller compacted slabs were evaluated before and after being subjected to a load simulator (MMLS3) to evaluate their resistance to permanent deformation. The results confirm that comparable performance can be achieved with the incorporation of CR using the dry process for high performance surfaces such as semi-dense asphalt, which usually require the use of polymer modified binders. Environmental performance improvement can be achieved by a washing step of the CR material that could remove polar CR additives which have commonly been used as vulcanization accelerator during rubber production.


Author(s):  
Felipe F. Camargo ◽  
Kamilla Vasconcelos ◽  
Liedi L. Bernucci

Fatigue cracking and rutting are among the major types of distresses to be considered in flexible pavement design. In this context, the choice of the asphalt binder plays a major role in both the fatigue behavior and permanent deformation resistance of the asphalt mixture. This study was conducted to assess the permanent deformation and fatigue behavior of a field-blended rubber-asphalt (CRMA) and compare the results with typical binders used in Brazil. The neat binder used for modification was also employed as a control and as a base for polymer modification (SBSA). The binders were evaluated using the multiple stress creep and recovery (MSCR) for permanent deformation behavior, and the time sweep (TST) and linear amplitude sweep (LAS) tests for fatigue behavior. Modification of the neat binder resulted in an increase in percentage recovery in the MSCR, whereas the percentage recovery for CRMA was the highest among the three binders at any given temperature. The non-recoverable creep compliance for the CRMA was lower than that exhibited by the neat and SBSA binders for both stress levels for the range of temperatures tested. Binder modification resulted in an improved fatigue behavior compared with the neat binder according to the TST and LAS, whereas rubber modification resulted in the best fatigue behavior. Fatigue life prediction by TST was consistently higher than fatigue life prediction in the LAS test, probably because different criteria were used for determining failure in each test (ranking of the binders remained constant regardless of the criteria used).


2019 ◽  
Vol 24 (2) ◽  
pp. 148
Author(s):  
Sri Mulyani ◽  
Nono Nono ◽  
Nyoman Suaryana

Asphalt polymer has superior characteristics than conventional asphalt. Styrene Butadiene Styrene (SBS) is a polymer that has proven its performance in heavy traffic, but it must be imported and expensive. Crumb rubber have high potential to be used as an asphalt modifier. Asphalt modified crumb rubber has high viscosity and is not homogeneous, so that the utilization cannot be delayed. This reduces workability in the field. This study aims to obtain asphalt modified crumb rubber which is easier to use by adding materials that do not affect its performance. RejIRE is a low viscosity additive to restore the properties of bitumen on crumb rubber modified. Experiments were carried out by adding variations in RejIRE levels to crumb rubber modified asphalt to determine its characteristics. Continued investigation of the performance of hot paved mixtures for wearing courses compared to asphalt mixtures with Pen 60/70 asphalt and SBS modified asphalt mixtures. The result is the addition of 0.75% RejIRE on asphalt crumb rubber modification have high workability. Overall the performance of the mix with SBS modified asphalt is better, but the mixture of hot paved with modified asphalt crumb rubber has a resistance to permanent deformation superior to the other paved mixtures.


Author(s):  
Adam J. Rinehart ◽  
Peter B. Keating

A full scale experimental study has demonstrated that long, unrestrained pipeline dents typically experience fatigue cracking in the dent contact region and have significantly shorter fatigue lives compared to other dent types studied. Furthermore, these dents often fully reround under normal pipeline operating pressures, making them difficult to reliably detect and assess using existing depth-based approaches. Several conditions unique to the dent contact region accelerate fatigue damage accumulation and are considered in a case-specific long dent fatigue life prediction method. First, the contact region develops significant bending stresses that contribute to a higher rate of fatigue crack growth. Second, history dependent, thru-thickness residual bending stresses that may have a significant influence on fatigue behavior are present in the contact region as a result of plastic deformation associated with dent formation and subsequent rebounding. A method for predicting the fatigue life of long dents that accounts for these factors is presented here and is used to analyze specific cases for which laboratory data is available. Nonlinear finite element modelling of the dent life cycle, including the indentation and rebounding phases, is used to determine local stress range behaviors and residual stress distributions. The application of appropriate fracture mechanics based models of fatigue is discussed and demonstrated. Fatigue life predictions are made on a case by case basis for situations studied in the laboratory so that the validity and accuracy of the approach presented here may be studied.


2007 ◽  
Vol 353-358 ◽  
pp. 142-145 ◽  
Author(s):  
Ki Weon Kang ◽  
Byeong Choon Goo ◽  
J.H. Kim ◽  
Heung Seob Kim ◽  
Jung Kyu Kim

This paper deals with the fatigue behavior and its statistical properties of SM490A steel at various temperatures, which is utilized in the railway vehicle. For these goals, the tensile ad fatigue tests were performed by using a servo-hydraulic fatigue testing machine at three temperatures: +20°C, -10°C and -40°C. The static strength and fatigue limits of SM490A steel were increased with decreasing of test temperature. The probabilistic properties of fatigue behavior are investigated by means of probabilistic stress-life (P-S-N) curve and they are well in conformance with the experimental results regardless of temperature. Also, based on P-S-N curves, the variation of fatigue life is investigated and as the temperature decreases, the variation of fatigue life increases moderately.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5051
Author(s):  
Fei Zhang ◽  
Lan Wang ◽  
Chao Li ◽  
Yongming Xing

To identify the most accurate approach for constructing of the dynamic modulus master curves for warm mix crumb rubber modified asphalt mixtures and assess the feasibility of predicting the phase angle master curves from the dynamic modulus ones. The SM (Sigmoidal model) and GSM (generalized sigmoidal model) were utilized to construct the dynamic modulus master curve, respectively. Subsequently, the master curve of phase angle could be predicted from the master curve of dynamic modulus in term of the K-K (Kramers–Kronig) relations. The results show that both SM and GSM can predict the dynamic modulus very well, except that the GSM shows a slightly higher correlation coefficient than SM. Therefore, it is recommended to construct the dynamic modulus master curve using GSM and obtain the corresponding phase angle master curve in term of the K-K relations. The Black space diagram and Wicket diagram were utilized to verify the predictions were consistent with the LVE (linear viscoelastic) theory. Then the master curve of storage modulus and loss modulus were also obtained. Finally, the creep compliance and relaxation modulus can be used to represent the creep and relaxation properties of warm-mix crumb rubber-modified asphalt mixtures.


Sign in / Sign up

Export Citation Format

Share Document