Synthesis of a boron/nitrogen-containing compound based on triazine and boronic acid and its flame retardant effect on epoxy resin

2016 ◽  
Vol 29 (5) ◽  
pp. 513-523 ◽  
Author(s):  
Tie Zhang ◽  
Weishi Liu ◽  
Meixiao Wang ◽  
Ping Liu ◽  
Yonghong Pan ◽  
...  

With the aim of developing a novel organic flame retardant, an organic boronic acid derivative containing a triazine ring (2,4,6-tris(4-boronic-2-thiophene)-1,3,5-triazine (3TT-3BA)) was synthesized. The thermal properties of 3TT-3BA and its corresponding intermediate products were investigated by thermogravimetric analysis. The results show that 3TT-3BA has a high char yield (56.9%). The flame retardant properties of epoxy resin (EP) with 3TT-3BA were investigated by cone calorimeter, limiting oxygen index (LOI) test, and vertical burning test (UL 94). The LOI of EP with 20% 3TT-3BA is 31.2% and the UL 94 V-0 rating is achieved for EP with 20% 3TT-3BA. The flame retardant mechanism of 3TT-3BA in EP was investigated using TGA–Fourier transform infrared spectroscopy and scanning electron microscopy.

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1708 ◽  
Author(s):  
Wang ◽  
Teng ◽  
Yang ◽  
You ◽  
Zhang ◽  
...  

In this article, the intumescent flame-retardant microsphere (KC-IFR) was prepared by inverse emulsion polymerizations, with the use of k-carrageenan (KC) as carbon source, ammonium polyphosphate (APP) as acid source, and melamine (MEL) as gas source. Meanwhile, benzoic acid functionalized graphene (BFG) was synthetized as a synergist. A “four-source flame-retardant system” (KC-IFR/BFG) was constructed with KC-IFR and BFG. KC-IFR/BFG was blended with waterborne epoxy resin (EP) to prepare flame-retardant coatings. The effects of different ratios of KC-IFR and BFG on the flame-retardant properties of EP were investigated. The results showed that the limiting oxygen index (LOI) values increased from 19.7% for the waterborne epoxy resin to 28.7% for the EP1 with 20 wt% KC-IFR. The addition of BFG further improved the LOI values of the composites. The LOI value reached 29.8% for the EP5 sample with 18 wt% KC-IFR and 2 wt% BFG and meanwhile, UL-94 test reached the V-0 level. In addition, the peak heat release (pHRR) and smoke release rate (SPR) of EP5 decreased by 63.5% and 65.4% comparing with EP0, respectively. This indicated the good flame-retardant and smoke suppression property of EP composites coating.


2012 ◽  
Vol 586 ◽  
pp. 172-176
Author(s):  
Hao Ran Zhou ◽  
Hao Cheng Yang ◽  
An Sun ◽  
Shuang Zhao

As the epoxy potting compound widely used, their flame retardant properties were concerned day by day.This paper neopentyl glycol phosphate melamine salt (NPM) was synthesised via phosphorus oxychloride as the acid source, neopentyl glycol as carbon source, melamine as gas source. The structure of NPM was characterized via infrared spectroscopic analysis (IR). Then the flame retardant properties of NPM/epoxy resin systerm were researched via the limiting oxygen index (LOI), vertical burning experiment, thermal gravimetric analysis (TGA) . The result shows that When the dosage of NPM is 27%, limiting oxygen index of epoxy resin have a extremum, is 32.4, char yield is 18.7% at 600°C. NPM can play a significant role in the improvement of the flame retardant properties of the epoxy.


2020 ◽  
Vol 38 (4) ◽  
pp. 333-347
Author(s):  
Lichen Zhang ◽  
Deqi Yi ◽  
Jianwei Hao

The flame retardant poly(diallyldimethylammonium) and polyphosphate polyelectrolyte complex and the curing agent m-Phenylenediamine were blended into diglycidyl ether of bisphenol A (DGEBA)-type epoxy resin to prepare flame-retardant epoxy resin thermosets. The effects of poly(diallyldimethylammonium) and polyphosphate on fire retardancy and thermal degradation behavior of epoxy resins (EP)/poly(diallyldimethylammonium) and polyphosphate composites were tested by Limiting Oxygen Index, UL-94, cone calorimeter tests, and thermogravimetric analysis and compared with pure EP. The results showed that the Limiting Oxygen Index value of EP/poly(diallyldimethylammonium) and polyphosphate composite could reach 31.9%, and UL-94 V-0 rating at 10 wt% poly(diallyldimethylammonium) and polyphosphate loading. Meanwhile the cone calorimetry peak heat release rate and total heat release were reduced up to 55.2% and 21.8%, respectively; smoke production rate and total smoke production were also declined significantly, compared with those of pure epoxy resins. Poly(diallyldimethylammonium) and polyphosphate played a very good flame-retardant effect on epoxy resins.


2012 ◽  
Vol 512-515 ◽  
pp. 2804-2807 ◽  
Author(s):  
Ling Yang ◽  
Yong Yi Wang

The effects of zinc hydroxystannte on the flame-retardant and smoke-suppressant properties of poly (vinyl chloride) (PVC) as well as their mechanism for flame retardancy and smoke suppression were studied through the limiting oxygen index (LOI) test, UL94 test, smoke density test, cone calorimeter, and ESEM. The results show that incorporation of a small amount of ZHS can greatly increase the LOI of PVC and reduce the smoke density of PVC during combustion. The cone data and ESEM analyses results show that incorporation of a small amount of ZHS greatly promotes the char formation of PVC and decreases the amount of hazardous gases released in PVC during combustion.


2018 ◽  
Vol 31 (8) ◽  
pp. 885-892 ◽  
Author(s):  
Yanan Yan ◽  
Bing Liang

A novel flame-retardant additive, 6,6′,6″-((1,3,5-triazine-2,4,6 triyl) tris (azanediyl)) tris (dibenzo[c,e][1,2]oxaphosphinine 6-oxide) (DOPO-M), was synthesized from melamine and 9,10-dihy-dro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO). The structure of DOPO-M was characterized by Fourier transform infrared (FTIR) spectroscopy, proton (1H) and phosphorous (31P) nuclear magnetic resonance (NMR) spectroscopies, and electrospray ionization mass spectroscopy (ESI-MS). DOPO-M was blended into epoxy resin (EP) to prepare flame-retardant EPs. The flame-retardant and thermal properties of EPs cured with triethylenetetramine (TETA) were investigated by thermogravimetric analysis (TGA), the UL-94 test, and the limiting oxygen index (LOI) test. The results revealed that the epoxy thermosets exhibited excellent flame retardancy and passed the V-0 rating of the UL-94 test with an LOI of 29.3% when the phosphorus content was 2.57 wt%. The scanning electron microscopy (SEM) results showed that DOPO-M in the EP/TETA system obviously accelerated the formation of a stronger, phosphorus-rich sealing char layer to improve the flame-retardant properties of the matrix during combustion.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3656
Author(s):  
Hangfeng Yang ◽  
Hangbo Yue ◽  
Xi Zhao ◽  
Minzimo Song ◽  
Jianwei Guo ◽  
...  

A novel halogen-free flame retardant containing sulfonamide, 1,3,5,7-tetrakis (phenyl-4-sulfonamide) adamantane (FRSN) was synthesized and used for improving the flame retardancy of largely used polycarbonate (PC). The flame-retardant properties of the composites with incorporation of varied amounts of FRSN were analyzed by techniques including limited oxygen index, UL 94 vertical burning, and cone calorimeter tests. The new FR system with sulfur and nitrogen elements showed effective improvements in PC’s flame retardancy: the LOI value of the modified PC increased significantly, smoke emission suppressed, and UL 94 V-0 achieved. Typically, the composite with only 0.08 wt% of FRSN added (an ultralow content) can increase the limiting oxygen index (LOI) value to 33.7% and classified as UL 94 V-0 rating. Furthermore, the mechanical properties and SEM morphology indicated that the FRSN has very good compatibility with PC matrix, which, in turn, is beneficial to the property enhancement. Finally, the analysis of sample residues after burning tests showed that a high portion of char was formed, contributing to the PC burning protection. This synthesized flame retardant provides a new way of improving PC’s flame retardancy and its mechanical property.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2205
Author(s):  
Qian Li ◽  
Yujie Li ◽  
Yifan Chen ◽  
Qiang Wu ◽  
Siqun Wang

A novel liquid phosphorous-containing flame retardant anhydride (LPFA) with low viscosity was synthesized from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and methyl tetrahydrophthalic anhydride (MeTHPA) and further cured with bisphenol-A epoxy resin E-51 for the preparation of the flame retardant epoxy resins. Both Fourier transform infrared spectroscopy (FT-IR), mass spectrometry (MS) and nuclear magnetic resonance (NMR) measurements revealed the successful incorporation of DOPO on the molecular chains of MeTHPA through chemical reaction. The oxygen index analysis showed that the LPFA-cured epoxy resin exhibited excellent flame retardant performance, and the corresponding limiting oxygen index (LOI) value could reach 31.2%. The UL-94V-0 rating was achieved for the flame retardant epoxy resin with the phosphorus content of 2.7%. With the addition of LPFA, the impact strength of the cured epoxy resins remained almost unchanged, but the flexural strength gradually increased. Meanwhile, all the epoxy resins showed good thermal stability. The glass transition temperature (Tg) and thermal decomposition temperature (Td) of epoxy resin cured by LPFA decreased slightly compared with that of MeTHPA-cured epoxy resin. Based on such excellent flame retardancy, low viscosity at room temperature and ease of use, LPFA showed potential as an appropriate curing agent in the field of electrical insulation materials.


2015 ◽  
Vol 30 (6) ◽  
pp. 816-826 ◽  
Author(s):  
Yiren Huang ◽  
Jianwei Yang ◽  
Zhengzhou Wang

Flame-retardant properties of ammonium polyphosphate (APP) and its two microcapsules, APP with a shell of melamine–formaldehyde (MF) resin (MFAPP) and APP with a shell of epoxy resin (EPAPP), were studied in styrene–butadiene–styrene (SBS). The results indicate that APP after the microencapsulation leads to an increase in limiting oxygen index in SBS compared with APP. When dipentaerythritol is incorporated into the SBS composites containing the APP microcapsules, a further improvement in flame retardancy of the composites is observed. The microencapsulation does not result in much improvement of mechanical properties. Moreover, the effect of a compatibilizer (SBS grafted with maleic anhydride) on flame-retardant and mechanical properties of SBS/APP composites was investigated.


2017 ◽  
Vol 748 ◽  
pp. 51-54
Author(s):  
Pei Bang Dai ◽  
Lin Ying Yang ◽  
Ting Zheng ◽  
Chang Qin ◽  
Qi Chen Tang

A rigid polyurethane (PU) flame retardant composite foam was prepared by the compounding of polyols and diisocyanates with a modified intumescent flame retardant (MIFR). The MIFR was based on the three components of intumescent flame retardant normally used and was modified in a surfactant TX-10 solution. The flame retardancy of the PU flame retardant composite foams were evaluated by using the limiting oxygen index (LOI), the UL-94 (vertical flame) test and scanning electron microscopy (SEM). When MIFR was fixed at 20.0 wt% in PU/MIFR composite foams, the MIFR could enhance the flame retardancy and pass V-0 rating of UL-94 test. The microstructures observed by SEM demonstrate that a suitable amount of MIFR can promote formation of compact intumescent charred layers in PU foams.


2011 ◽  
Vol 391-392 ◽  
pp. 204-208
Author(s):  
Xiao Ping Hu ◽  
Yu Yang Guo ◽  
Quan Min Xu ◽  
Hui Min Heng ◽  
Liang Jun Li

A novel intumescent flame retardant oligomer containing phosphorous-nitrogen structure (PSPTR) was synthesized and characterized by Fourier Transform Infrared (FTIR) and Mass Spectrometry (MS). The thermal behavior of PSPTR was investigated by thermogravimetric analysis (TGA). The TGA data shows that PSPTR has a high initial temperature of thermal degradation and a high char residue of 41.18wt% at 700 . A novel intumescent flame retardant (IFR) system, which is composed of PSPTR and novolac phenol (NP), was used to impart flame retardancy of ABS. The combustion behaviors of the ABS/IFR composites were investigated by Limiting Oxygen Index (LOI) and UL-94 tests. When the content of IFR (PSPTR:NP=1:1 mass ratio) is 30 wt%, the LOI value of ABS/IFR reaches 28.2, and the vertical burning test reaches UL-94 V-1 rating.


Sign in / Sign up

Export Citation Format

Share Document