Modeling and experimental study of temperature distributions in end milling Ti6Al4V with solid carbide tool

Author(s):  
Yujing Sun ◽  
Jie Sun ◽  
Jianfeng Li

The objective of this study is to model the temperature distributions in milling analytically. In this article, previous research on heat generation and heat dissipation in the machining process was reviewed and then the temperature model in intermittent cutting with continuously varying chip thickness was established. The experimental study to measure cutting temperature in milling Ti6Al4V utilizing semi-artificial thermocouple was presented. The predicted and experimental results for milling process were presented and compared. The results showed that the proposed mathematical model could predict cutting temperature with high accuracy.

2003 ◽  
Vol 17 (08n09) ◽  
pp. 1401-1407
Author(s):  
Young Moon Lee ◽  
Seung Han Yang ◽  
Seung Il Chang

In intermittent cutting processes, characterized by the use of rotating tools, the undeformed chip thickness varies periodically according to the phase change of tool. Although many studies have already concentrated on intermittent cutting processes, there has been no previous analysis of the shear and friction processes. In the current study, an up-end milling process is transformed into an equivalent oblique cutting process. The varying undeformed chip thicknesses and cutting forces in the up-end milling process are thus replaced with the equivalent average ones. As a result, the shear process in shear plane and the chip-tool friction process of intermittent cutting are analyzed using the equivalent oblique cutting model. The validity of the proposed analysis was verified based on two sets of cutting tests i.e. up-end milling and equivalent oblique cutting tests.


2010 ◽  
Vol 102-104 ◽  
pp. 506-510 ◽  
Author(s):  
Ying Chun Liang ◽  
Kai Yang ◽  
Qing Shun Bai ◽  
W.Q. Chen

In this paper, the effect of minimum chip thickness on cutting temperature in micro-end- milling of aluminum alloy Al2024-T6 using a tungsten-carbide cutter are investigated and analyzed. The three-dimensional coupled thermal-mechanical finite element model is adopted to determine the effects of varying depth of cut on cutting temperature considering size effects. The simulation results show that the cutting temperature in micro-end-milling is lower than those occurring in conventional milling processes. When the depth of cut is approximately 40% of the cutting edge radius, there is no chip formation. The maximum temperature occurs at the contact region between micro cutting edge and workpiece, which shows an obvious size effect. The experimental verification of the simulation model is carried out on a micro-end-milling process of aluminum alloy 2024-T6 with a high precision infrared camera. The influence of various cutting depths on cutting temperature has been verified in experiments. The experimental measurements results are in a good agreement with the simulation results.


2018 ◽  
Vol 12 (1) ◽  
pp. 105-112
Author(s):  
Dongjin Wu ◽  
◽  
Koji Teramoto

The objective of this study is to utilize measured temperatures for process monitoring in precision end-milling. Thermal expansion of machining workpiece deteriorates machining accuracy and is considered as an important phenomenon to achieve accurate end-milling process. Thermo-couples are typically employed to measure the temperatures of machining workpiece. This study proposes a method to select appropriate temperature measurement positions based on variations in conscious machining evaluation. The variations in the conscious evaluation of temperature distributions on the workpiece are calculated by extending a conventional nominal machining simulation. Variations in the machining process are generated by using different combinations of model parameters for process simulations. An orthogonal array is employed to assign the parameters to reduce the combination number. An evaluation criterion to select measuring points is calculated given the temperature distributions corresponding to the parameter combinations. Feasibility of the proposed criterion is investigated by evaluating a reported temperature estimation case study. Furthermore, an adaptability of the proposed criterion to different machining situations is evaluated by comparing selected measuring points corresponding to different cutter paths.


Magnesium alloys have a tremendous possibility for biomedical applications due to their good biocompatibility, integrity and degradability, but their low ignition temperature and easy corrosive property restrict the machining process for potential biomedical applications. In this research, ultrasonic vibration-assisted ball milling (UVABM) for AZ31B is investigated to improve the cutting performance and get specific surface morphology in dry conditions. Cutting force and cutting temperatures are measured during UVABM. Surface roughness is measured with a white light interferometer after UVABM. The experimental results show cutting force and cutting temperature reduce due to ultrasonic vibration, and surface roughness decreases by 34.92%, compared with that got from traditional milling, which indicates UVABM is suitable to process AZ31B for potential biomedical applications.


Author(s):  
Qiang Guo ◽  
Yan Jiang ◽  
Zhibo Yang ◽  
Fei Yan

As a key factor, the accuracy of the instantaneous undeformed thickness model determines the force-predicting precision and further affects workpiece machining precision in the micro-milling process. The runout with five parameters affects the machining process more significantly compared with macro-milling. Furthermore, modern industry uses cutters with non-uniform pitch and helix angles more and more common for their excellent properties. In this article, an instantaneous undeformed thickness model is presented regarding cutter runout, variable pitch, and helix angles in the micro-milling process. The cutter edge with the cutter runout effect is modeled. Then, the intersecting ellipse between the plane vertical to the spindle axis and the cutter surface which is a cylinder can be gained. Based on this, the points, which are used to remove the material, on the ellipse as well as cutter edges are calculated. The true trochoid trajectory for each cutting point along the tool path is built. Finally, the instantaneous undeformed thickness values are computed using a numerical algorithm. In addition, this article analyzes runout parameters’ effects on the instantaneous undeformed thickness values. After that, helix and pitch angles’ effects on the instantaneous undeformed thickness are studied. Ultimately, the last section verifies the correctness and validity of the instantaneous undeformed thickness model based on the experiment conducted in the literature.


Author(s):  
Xuewei Zhang ◽  
Tianbiao Yu ◽  
Wanshan Wang

An accurate prediction of cutting forces in the micro end milling, which is affected by many factors, is the basis for increasing the machining productivity and selecting optimal cutting parameters. This paper develops a dynamic cutting force model in the micro end milling taking into account tool vibrations and run-out. The influence of tool run-out is integrated with the trochoidal trajectory of tooth and the size effect of cutting edge radius into the static undeformed chip thickness. Meanwhile, the real-time tool vibrations are obtained from differential motion equations with the measured modal parameters, in which the process damping effect is superposed as feedback on the undeformed chip thickness. The proposed dynamic cutting force model has been experimentally validated in the micro end milling process of the Al6061 workpiece. The tool run-out parameters and cutting forces coefficients can be identified on the basis of the measured cutting forces. Compared with the traditional model without tool vibrations and run-out, the predicted and measured cutting forces in the micro end milling process show closer agreement when considering tool vibrations and run-out.


2016 ◽  
Vol 1812 ◽  
pp. 65-70 ◽  
Author(s):  
S. Puma-Araujo ◽  
D. Olvera-Trejo ◽  
A. Elías-Zuñiga ◽  
O. Martínez-Romero ◽  
C.A. Rodríguez

ABSTRACTThe aerospace and automotive industries demand the development of new manufacturing processes. The productivity during machining of very flexible aerospace and automotive aluminum components is limited for self-excited vibrations. New solutions are needed to suppress vibrations that affect the accuracy and quality of the machined surfaces. Rejection of one piece implies an increase in the manufacturing cost and time. This paper is focused on the design, manufacturing and characterization of a magnetorheological damper. The damper was attached to a thin-floored component and a magnetic field was controlled in order to modify the damping behavior of the system. The dynamics of the machining process was developed by considering a three-degree-of-freedom model. This study was experimentally validated with a bull-nose end milling tool to manufacture monolithic parts with thin wall and thin floor. Experimental tests and characterization of the magnetorheological damper permitted to improve the surface finish and productivity during the machining of thin-floored components. A further aim of this paper was to develop a rheological damper by using magnetorheological fluids (MR) to change the thin floor rigidity with voltage. The stability of the milling process was also analytically described considering one, two or three degrees of freedom, using a mathematical integration model based on the Enhanced Multistage Homotopy Perturbation Method (EMHPM).


Author(s):  
Reza Madoliat ◽  
Sajad Hayati

This paper primarily deals with suppression of chatter in end-milling process. Improving the damping is one way to achieve higher stability for machining process. For this purpose a damper is proposed that is composed of a core and a multi fingered hollow cylinder which are shrink fitted in each other and their combination is shrink fitted inside an axial hole along the tool axis. This structure causes a resisting friction stress during bending vibration. Using FEA-ANSYS the structure is simulated. Then a parameter study is carried out where the frequency response and the depth of cut are calculated and tabulated to obtain the most effective configuration. The optimal configuration of tool is fabricated and finite element results are validated using modal test. The results show a high improvement in performance of the tool with proposed damper. Good agreement between experiments and modeling is obtained.


Sign in / Sign up

Export Citation Format

Share Document