An algorithm for trajectory planning of complex surface parts for laser cladding remanufacturing

Author(s):  
Jinduo Liu ◽  
Wenlei Sun ◽  
Yong Huang

This paper aims to solve the problem of laser cladding for complex parts, a trajectory planning method for complex parts is proposed. First, the part model is transformed into stereolithography (STL) files, the plane groups are established where the spacing of plane groups is determined by the overlap ratio, and the direction is perpendicular to the laser scanning. Further, to obtain the excellent cladding performance, a search algorithm based on the height error of adjacent cladding is proposed to select effective points. After this, adjacent points are clustered to a dataset according to the relative position that decided by the angle. Meanwhile, the position and the attitude of all points are calculated by the geometrical characteristics and then stored. The cooperate work of positioner and robot is adopted, the attitude of the current point is adjusted using the positioner, that is, the molten pool of the current point is in a horizontal state, which can ensure the forming accuracy of curved parts after cladding. Finally, the cladding experiment of curved surface parts is carried out. The results of the analysis showed that the coating had a smooth surface and a compact structure without defects. This method can be applied in other curved parts.

2017 ◽  
Vol 46 (5) ◽  
pp. 506005
Author(s):  
黄 勇 Huang Yong ◽  
孙文磊 Sun Wenlei ◽  
陈 影 Chen Ying

2018 ◽  
Vol 96 (5-8) ◽  
pp. 2397-2406 ◽  
Author(s):  
Xinlong Wang ◽  
Wenlei Sun ◽  
Ying Chen ◽  
Jianjie Zhang ◽  
Yong Huang ◽  
...  

2012 ◽  
Vol 499 ◽  
pp. 114-119 ◽  
Author(s):  
Ming Di Wang ◽  
Shi Hong Shi ◽  
X.B. Liu ◽  
Cheng Fa Song ◽  
Li Ning Sun

Numerical simulation of laser cladding is the main research topics for many universities and academes, but all researchers used the Gaussian laser light source. Due to using inside-beam powder feeding for laser cladding, the laser is dispersed by the cone-shaped mirror, and then be focused by the annular mirror, the laser can be assumed as the light source of uniform intensity.In this paper,the temperature of powder during landing selected as the initial conditions, and adopting the life-and-death unit method, the moving point heat source and the uniform heat source are realized. In the thickness direction, using the small melt layer stacking method, a finite element model has been established, and layer unit is acted layer by layer, then a virtual reality laser cladding manu-facturing process is simulated. Calculated results show that the surface temperature of the cladding layer depends on the laser scanning speed, powder feed rate, defocus distance. As cladding layers increases, due to the heat conduction into the base too late, bath temperature will gradually increase. The highest temperature is not at the laser beam, but at the later point of the laser beam. In the clad-ding process, the temperature cooling rate of the cladding layer in high temperature section is great, and in the low-temperature, cooling rate is relatively small. These conclusions are also similar with the normal laser cladding. Finally, some experiments validate the simulation results. The trends of simulating temperature are fit to the actual temperature, and the temperature gradient can also ex-plain the actual shape of cross-section.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940014
Author(s):  
Ruifeng Li ◽  
Yi Qiu ◽  
Yanyan Zhu

A Ni–Fe–B–Si–Nb amorphous alloy was deposited on a steel substrate surface via a laser cladding process, and a laser cladding plus laser remelting process. The wear behavior of the laser processed samples and the bulk metallic glass (BMG) sample with the same nominal composition were tested using a pin-on-disc type testing machine. The nano-mechanical properties of the samples were measured with a nano-characterization system. The friction wear tests showed that deep grooves and wear debris were formed on the worn surface of the laser cladded coating, while only shallow grooves for the laser remelted coatings. The friction coefficients of laser remelted coatings and BMG were lower than the laser cladded coating. The wear mass losses of the laser remelted coating were less than the BMG when the laser remelting scanning speed was higher than 6 mm/min. The nano-hardness and elastic modulus of the remelted coating is higher than that of the laser cladded coating. Also, they increase with the increasing laser scanning speed with 1227.9 HV and 277.4 GPa when the remelting scanning speed is 8 m/min. Based on the nano-indentation and friction wear tests results, it was found that the friction wear properties of the laser cladded coating, laser remelted coatings and BMG related well to the ratio of H3/E2. A higher value of H3/E2 can lead to a better wear resistance property.


Author(s):  
Chuanwei Zhang ◽  
Feiyan Han ◽  
Wu Zhang

Defining the cutting sequence of each cutter scientifically in the process of removing the allowance has an important influence on the machining efficiency for complex parts, which have multiple machining features. In order to satisfy the needs of high efficiency for rough machining, after determining the tool path of the machining region, a cutting sequence optimization method based on the tabu search algorithm is presented to define the cutting order in rough machining of complex parts. First, a cutting sequence optimization mathematical model is established, which relates to the shortest total length of the tool path. Second, through the problem analysis, the cutting sequence optimization model is converted into an open and constrained traveling salesman problem. And then, the optimization model is solved by dealing with an open and constrained traveling salesman problem using the tabu search algorithm. Finally, the optimal cutting sequence of machining a casing part is calculated, and a simulation and experiment are carried out. The result shows that the optimization approach presented in this article can optimize the cutting sequence and cutter position of advance and retract. Compared with the non-optimized cutting sequence method, the total length of tool path is reduced by 16.7%, the cutter lifting times are reduced to 26, and the efficiency is increased by 21.62%.


2020 ◽  
Vol 57 (7) ◽  
pp. 071404
Author(s):  
王家胜 Wang Jiasheng ◽  
舒林森 Shu Linsen

Author(s):  
Yan Chen ◽  
Wenzhuo Chen ◽  
Bo Li ◽  
Gang Zhang ◽  
Weiming Zhang

Purpose The purposes of this paper are to review the progress of and conclude the trend for paint thickness simulation for painting robot trajectory planning. Design/methodology/approach This paper compares the explicit function-based method and computational fluid dynamics (CFD)-based method used for paint thickness simulation. Previous research is considered, and conclusions with the outlook are drawn. Findings The CFD-based paint deposition simulation is the trend for paint thickness simulation for painting robot trajectory planning. However, the calculation of paint thickness resulting from dynamically painting complex surface remains to be researched, which needs to build an appropriate CFD model, study approaches to dynamic painting simulation and investigate the simulation with continuously changing painting parameters. Originality/value This paper illustrates that the CFD-based method is the trend for the paint thickness simulation for painting robot trajectory planning. Current studies have been analyzed, and techniques of CFD modeling have also been summarized, which is vital for future study.


2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040029
Author(s):  
Zhenbo Qin ◽  
Da-Hai Xia ◽  
Yida Deng ◽  
Wenbin Hu ◽  
Zhong Wu

Laser surface quenching technology was used to modify the surface microstructure of as-cast Ni-Al bronze (NAB). The modified microstructure was studied by scanning electron microscopy (SEM), and the effect of laser process parameters on microstructure evolution was investigated. It was found that a fine-grained zone with fully [Formula: see text] phase microstructure formed on the surface of NAB. The depth of the fine-grained zone increased with the increase of laser power, and surface melting occurred when the power reached a threshold value. Laser scanning at a low rate caused the coarsening of grain boundary, while too high rate led to incomplete quenching. Spot overlap ratio determined the microstructure of the superimposed area, and unsuitable ratio would cause bulky [Formula: see text] precipitation at the grain boundary or incomplete transformation from [Formula: see text] phase to [Formula: see text] phase.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1902 ◽  
Author(s):  
Jingyu Ru ◽  
Zixi Jia ◽  
Yufang Yang ◽  
Xiaosheng Yu ◽  
Chengdong Wu ◽  
...  

Following the development of wireless multimedia sensor networks (WMSN), the coverage of the sensors in the network constitutes one of the key technologies that have a significant influence on the monitoring ability, quality of service, and network lifetime. The application environment of WMSN is always a complex surface, such as a hilly surface, that would likely cause monitoring shadowing problems. In this study, a new coverage-enhancing algorithm is presented to achieve an optimal coverage ratio of WMSN based on three-dimensional (3D) complex surfaces. By aiming at the complex surface, the use of a 3D sensing model, including a sensor monitoring model and a surface map calculation algorithm, is proposed to calculate the WMSN coverage information in an accurate manner. The coverage base map allowed the efficient estimation of the degree of monitoring occlusion efficiently and improved the system’s accuracy. To meet the requests of complex 3D surface monitoring tasks for multiple sensors, we propose a modified cuckoo search algorithm that considers the features of the WMSN coverage problem and combines the survival of the fittest, dynamic discovery probability, and the self-adaptation strategy of rotation. The evaluation outcomes demonstrate that the proposed algorithm can describe the 3D covering field but also improve both the coverage quality and efficiency of the WMSN on a complex surface.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4115
Author(s):  
Jolanta Koszelew ◽  
Joanna Karbowska-Chilinska ◽  
Krzysztof Ostrowski ◽  
Piotr Kuczyński ◽  
Eric Kulbiej ◽  
...  

A single anti-collision trajectory generation problem for an “own” vessel only is significantly different from the challenge of generating a whole set of safe trajectories for multi-surface vehicle encounter situations in the open sea. Effective solutions for such problems are needed these days, as we are entering the era of autonomous ships. The article specifies the problem of anti-collision trajectory planning in many-to-many encounter situations. The proposed original multi-surface vehicle beam search algorithm (MBSA), based on the beam search strategy, solves the problem. The general idea of the MBSA involves the application of a solution for one-to-many encounter situations (using the beam search algorithm, BSA), which was tested on real automated radar plotting aid (ARPA) and automatic identification system (AIS) data. The test results for the MBSA were from simulated data, which are discussed in the final part. The article specifies the problem of anti-collision trajectory planning in many-to-many encounter situations involving moving autonomous surface vehicles, excluding Collision Regulations (COLREGs) and vehicle dynamics.


Sign in / Sign up

Export Citation Format

Share Document