Evidence of thermoplastic instability about segmented chip formation process for Ti–6Al–4V alloy based on the finite-element method

Author(s):  
G Chen ◽  
C Ren ◽  
X Yang ◽  
T Guo

A ductile failure law and an energy-based failure criterion have been implemented in a 2D finite-element (FE) model to simulate the segmented chip formation process in titanium alloy (Ti–6Al–4V) machining. The variations of stress and strain are taken into account in defining the material failure criterion. The cutting forces and chip morphology calculated by FE model are compared with experimental results in good agreement, validating the FE model. Stresses, strains, cutting temperatures, and stiffness degradation along adiabatic shear bands (ASBs) are analysed during the segment formation process to investigate the segment formation mechanism. It is found that the variation trend of strains is the same as that of temperatures, in addition, the variation of strains and their changing-rate lag slightly behind those of temperatures. These observations provide a new evidence of thermoplastic instability along ASB and increase the understanding of segmented chip formation mechanism. Furthermore, simulation results show that ASB morphology and its forming mechanism are mainly caused by thermoplastic instability in primary deformation zone and friction characteristic in the second deformation zone.

Author(s):  
Amrita Priyadarshini ◽  
Surjya K. Pal ◽  
Arun K. Samantaray

This paper examines the plane strain 2D Finite Element (FE) modeling of segmented, as well as continuous chip formation while machining AISI 4340 with a negative rake carbide tool. The main objective is to simulate both the continuous and segmented chips from the same FE model based on FE code ABAQUS/Explicit. Both the adiabatic and coupled temperature displacement analysis has been performed to simulate the right kind of chip formation. It is observed that adiabatic hypothesis plays a critical role in the simulation of segmented chip formation based on adiabatic shearing. The numerical results dealing with distribution of stress, strain and temperature for segmented and continuous chip formations were compared and found to vary considerably from each other. The simulation results were also compared with other published results; thus validating the developed model.


2012 ◽  
Vol 505 ◽  
pp. 31-36 ◽  
Author(s):  
Moaz H. Ali ◽  
Basim A. Khidhir ◽  
Bashir Mohamed ◽  
A.A. Oshkour

Titanium alloys are desirable materials for aerospace industry because of their excellent combination of high specific strength, lightweight, fracture resistant characteristics, and general corrosion resistance. Therefore, the chip morphology is very important in the study of machinability of metals as well as the study of cutting tool wear. The chips are generally classified into four groups: continuous chips, chips with built-up-edges (BUE), discontinuous chips and serrated chips. . The chip morphology and segmentation play a predominant role in determining machinability and tool wear during the machining process. The mechanics of segmented chip formation during orthogonal cutting of titanium alloy Ti–6Al–4V are studied in detail with the aid of high-speed imaging of the chip formation zone. The finite element model of chip formation of Ti–6Al–4V is suggested as a discontinuous type chip at lower cutting speeds developing into a continuous, but segmented, chip at higher cutting speeds. The prediction by using finite-element modeling method and simulation process in machining while create chips formation can contribute in reducing the cost of manufacturing in terms of prolongs the cutting tool life and machining time saving.


Author(s):  
Amrita Priyadarshini ◽  
Surjya K. Pal ◽  
Arun K. Samantaray

This paper examines the plane strain 2D Finite Element (FE) modeling of segmented, as well as continuous chip formation while machining AISI 4340 with a negative rake carbide tool. The main objective is to simulate both the continuous and segmented chips from the same FE model based on FE code ABAQUS/Explicit. Both the adiabatic and coupled temperature displacement analysis has been performed to simulate the right kind of chip formation. It is observed that adiabatic hypothesis plays a critical role in the simulation of segmented chip formation based on adiabatic shearing. The numerical results dealing with distribution of stress, strain and temperature for segmented and continuous chip formations were compared and found to vary considerably from each other. The simulation results were also compared with other published results; thus validating the developed model.


Author(s):  
Xiangqin Zhang ◽  
Xueping Zhang ◽  
A. K. Srivastava

To predict the cutting forces and cutting temperatures accurately in high speed dry cutting Ti-6Al-4V alloy, a Finite Element (FE) model is established based on ABAQUS. The tool-chip-work friction coefficients are calculated analytically using the measured cutting forces and chip morphology parameter obtained by conducting the orthogonal (2-D) machining tests. It reveals that the friction coefficients between tool-work are 3∼7 times larger than that between tool-chip, and the friction coefficients of tool-chip-work vary with feed rates. The analysis provides a better reference for the tool-work-chip friction coefficients than that given by literature empirically regardless of machining conditions. The FE model is capable of effectively simulating the high speed dry cutting process of Ti-6Al-4V alloy based on the modified Johnson-Cook model and tool-work-chip friction coefficients obtained analytically. The FE model is further validated in terms of predicted forces and the chip morphology. The predicted cutting force, thrust force and resultant force by the FE model agree well with the experimentally measured forces. The errors in terms of the predicted average value of chip pitch and the distance between chip valley and chip peak are smaller. The FE model further predicts the cutting temperature and residual stresses during high speed dry cutting of Ti-6Al-4V alloy. The maximum tool temperatures exist along the round tool edge, and the residual stress profiles along the machined surface are hook-shaped regardless of machining conditions.


2006 ◽  
Vol 5-6 ◽  
pp. 519-526 ◽  
Author(s):  
E. McCulloch ◽  
Alan MacBeath ◽  
Margaret Lucas

The performance of an ultrasonic cutting device critically relies on the interaction of the cutting tool and the material to be cut. A finite element (FE) model of ultrasonic cutting is developed to enable the design of the cutting blade to be influenced by the requirements of the toolmaterial interaction and to allow cutting parameters to be estimated as an integral part of designing the cutting blade. In this paper, an application in food processing is considered and FE models of cutting are demonstrated for toffee; a food product which is typically sticky, highly temperature dependent, and difficult to cut. Two different 2D coupled thermal stress FE models are considered, to simulate ultrasonic cutting. The first model utilises the debond option in ABAQUS standard and the second uses the element erosion model in ABAQUS explicit. Both models represent a single blade ultrasonic cutting device tuned to a longitudinal mode of vibration cutting a specimen of toffee. The model allows blade tip geometry, ultrasonic amplitude, cutting speed, frequency and cutting force to be adjusted, in particular to assess the effects of different cutting blade profiles. The validity of the model is highly dependent on the accuracy of the material data input and on the accuracy of the friction and temperature boundary condition at the blade-material interface. Uniaxial tensile tests are conducted on specimens of toffee for a range of temperatures. This provides temperature dependent stress-strain data, which characterises the material behaviour, to be included in the FE models. Due to the difficulty in gripping the tensile specimens in the test machine, special grips were manufactured to allow the material to be pulled without initiating cracks or causing the specimen to break at the grips. A Coulomb friction condition at the bladematerial interface is estimated from experiments, which study the change in the friction coefficient due to ultrasonic excitation of a surface, made from the same material as the blade, in contact with a specimen of toffee. A model of heat generation at the blade-toffee interface is also included to characterise contact during ultrasonic cutting. The failure criterion for the debond model assumes crack propagation will occur when the stress normal to the crack surface reaches the tensile failure stress of toffee and the element erosion model uses a shear failure criterion to initiate element removal. The validity of the models is discussed, providing some insights into the estimation of contact conditions and it is shown how these models can improve design of ultrasonic cutting devices.


Sign in / Sign up

Export Citation Format

Share Document