A new six-parallel-legged walking robot for drilling holes on the fuselage

Author(s):  
Yang Pan ◽  
Feng Gao

In this paper, a new kind of six-parallel-legged robot is presented. It is designed for drilling holes on the aircraft surface. Each leg of the robot is a 3-DOF parallel mechanism with three chains: 1UP and 2UPS. The three prismatic joints are active joints and can be controlled either by position or by force. First, the task process and the gait plan are discussed and then, according to the requirement, the control method is introduced. After that, the mechanism topology patterns under different working conditions are studied and the control mode of each motor is determined. Then the kinematical model is built up, based on which the position control curves can be obtained. The simulation result shows that the robot can walk pretty well on the fuselage surface and that the actuation forces are quite smooth. Furthermore, the first prototype has been manufactured and some experiments such as walking and manipulation have been done.

Author(s):  
Pan Yang ◽  
Feng Gao

In this paper, a new kind of 6-legged robot is presented. It was designed for drilling holes on the aircraft surface. Each leg of the robot is a 3-DOF parallel mechanism and the actuation can be controlled both by position and force. The mechanism design method of the robot is discussed. The relationship between control method and motion topology under different working conditions is studied. The kinematical model is built, based on which the motion plan are made. The control method is position-force control, so the calculation of actuation force is done. Finally, the simulation result is showed: the robot can drill on the fuselage surface successfully and the position-force control method can improve its performance a lot.


Author(s):  
Xianchao Zhao ◽  
Yang Pan ◽  
Feng Gao

In this paper, a new kind of 6-legged robot for drilling holes on the aircraft surface is presented. Each leg of the robot is a parallel mechanism with 3 degree of freedoms thus the robot includes totally 18 motors. Due to different work status, the control modes of these motors are also different and thus the force-position hybrid control method is applied. The kinematic and dynamic model is briefly introduced. Then the robot gait is discussed. After that hybrid control method is introduced: first the control mode of each motor should be determined, then the position or force control curves should be calculated. In the end of this paper, both virtual and real prototype of this robot is showed and the experiment result showed that the hybrid control method can significantly improve the robot performance.


2004 ◽  
Vol 471-472 ◽  
pp. 528-531
Author(s):  
Y.J. Liu ◽  
X.Z. Kong ◽  
Z.W. Li

A PID controller based on Back-propagation neural networks is presented and used to the pneumatic proportional positioning system in this paper. A proportional valve-cylinder without rod system for buffering and positioning, which is controlled by microcomputer, is designed and completed in this paper. The experimental results show that the system gains self-adaptability because of the application of this control method. And the buffering and positioning of the cylinder can be implemented under different working conditions.


2017 ◽  
Vol 29 (3) ◽  
pp. 536-545
Author(s):  
Masahiro Ikeda ◽  
◽  
Ikuo Mizuuchi

[abstFig src='/00290003/09.jpg' width='300' text='Energy flow in legged robot' ] As a method of robot movement, legs have the advantage of traversability on rough terrain. However, the motion of a legged robot is accompanied by energy loss. The main causes for this loss could be negative work and contact between the legs and ground. On the other hand, animals with legs are considered to reduce energy loss by using the elasticity of their body. In this study, we analyze the influence of walking, using an elastic passive joint mounted on the trunk of a quadruped robot, on the energy loss. Additionally, we study the energy flow between legs and elastic components. In this study, we clarify a control method for quadruped robots in order to reduce the energy loss of walking. The results of simulating a quadruped walking robot, which has passive joints with elastic components on the trunk, are analyzed and the relationship between each kind of energy loss and the trunk joint’s elasticity is clarified.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840077
Author(s):  
Yi-Li Zhu ◽  
Yan-Hong Zhang ◽  
Yi-Lin Liu

As it is difficult for traditional control method to realize rotor resuspension after short failure of Active Magnetic Bearing (AMB) system, a new control method containing rotor collision force evaluation algorithm module, rotor position control algorithm module and rotor vibration speed control algorithm module was proposed. Through the evaluation of rotor collision force, the controller automatically selects rotor positon control mode or rotor speed control mode. Based on rigid rotor theory, rotor dynamic model was established to analyze the dynamic responses after short failure of AMB system utilizing different control method. The results proved that the proposed control method can successfully realize rotor re-suspension.


2017 ◽  
Vol 14 (4) ◽  
pp. 172988141771659 ◽  
Author(s):  
Lingfeng Sang ◽  
Hongbo Wang ◽  
Hongnian Yu ◽  
Luige Vladareanu

This article adopts a 2-UPS+UP (U, P, and S are universal joint, the prismatic joint, and sphere joint, respectively) parallel mechanism as the leg mechanism of the quadruped walking robot based on the bionic concept and the motion capacity of the leg mechanism. The article investigates the kinematics (including the leg mechanism and the whole mechanism), gait planning, control, and experiment in detail. The following tasks are conducted: (1) designing the whole mechanism and developing the kinematics equations for both the leg mechanism and the whole mechanism; (2) planning the trotting gait and designing the foot trajectory based on the robot characteristics and conducting the kinematics analysis; (3) building the control system of the robot using self-developed controllers and drivers and studying the compound position control strategy; and (4) conducting the experiments for validating the controller, the compound position control strategy, the trotting pace, carrying capacity, and human-carrying walking. The results confirm that the proposed human-carrying walking robot has good performance and it is also verified that the controller and the compound position control strategy are suitable.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110128
Author(s):  
Bingshan Hu ◽  
Lei Yan ◽  
Liangliang Han ◽  
Hongliu Yu

Dual-arm robot astronaut has more general and dexterous operation ability than single-arm robot, and it can interact with astronaut more friendly. The robot will inevitably use both arms to grasp payloads and transfer them. The force control of the arms in closed chains is an important problem. In this article, the coordinated kinematic and dynamic equations of the dual-arm astronaut are established by considering the closed-chain constraint relationship. Two compliance control methods for dual-arm astronaut coordinated payload manipulating are proposed. The first method is called master–slave force control and the second is the shared force control. For the former, the desired path and operational force of the master arm should be given in advance and that of slave arm are calculated from the dual-arm robot closed-chain constraint equation. In the share control mode, the desired path and end operational force of dual arms are decomposed from the dual-arm robot closed-chain constraint equation directly and equally. Finally, the two control algorithms are verified by simulation. The results of analysis of variance of the simulation data show that the two control methods have no obvious difference in the accuracy of force control but the second control method has a higher position control accuracy, and this proves that the master–slave mode is better for tasks with explicit force distribution requirements and the shared force control is especially suitable for a high-precision requirement.


2020 ◽  
Author(s):  
Fahad Raza ◽  
Dai Owaki ◽  
Mitsuhiro Hayashibe

Abstract The most common cause of injuries among older adults is falling. Recently, there have been numerous developments in assistive and exoskeleton systems. However, comparatively little work is being done on systems that may help people to keep an upright position and avoid falling over. In this preliminary work, we investigate the feasibility of the wheel-legged robot as a balance-assist system for the people who cannot maintain balance and walk because of an injury, old age, or neurological or physical disorder. We perform motion stability analyses of the wheel-legged robot under different conditions such as system modeling errors, sensor noise, and external disturbances. The linear quadratic regulator (LQR) control approach is adopted for balancing, steering, and translational position control of the robot. To validate our control framework and visualize results, the robot is modeled and tested in the Gazebo simulator using ROS (Robot Operating System). Subsequently, the simulation results demonstrate the effectiveness of the LQR control method under the translational and rotational pushes of the wheel-legged system for human-robot interaction.


2012 ◽  
Vol 2012 (0) ◽  
pp. _2A1-V03_1-_2A1-V03_2
Author(s):  
Yuuki YAMAMOTO ◽  
Keita AOKI ◽  
Taisuke AIMI ◽  
Shogo JOSAKA ◽  
Koji SHIBUYA ◽  
...  

Actuators ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 154
Author(s):  
Bin Wang ◽  
Pengda Ren ◽  
Xinhao Huang

A piston piezoelectric (PZT) pump has many advantages for the use of light actuators. How to deal with the contradiction between the intermittent oil supplying and position control precision is essential when designing the controller. In order to accurately control the output of the actuator, a backstepping sliding-mode control method based on the Lyapunov function is introduced, and the controller is designed on the basis of establishing the mathematical model of the system. The simulation results show that, compared with fuzzy PID and ordinary sliding-mode control, backstepping sliding-mode control has a stronger anti-jamming ability and tracking performance, and improves the control accuracy and stability of the piezoelectric pump-controlled actuator system.


Sign in / Sign up

Export Citation Format

Share Document