Effect of the friction coefficient for contact pressure of packer rubber

Author(s):  
Weiguo Ma ◽  
Baolong Qu ◽  
Feng Guan

A systematic study of the packer rubber contact pressure under a fixed-displacement load is conducted to gain further insight into the packer seal mechanism. A Y221-114 double rubber packer is investigated using the finite element software ANSYS, where a design of experiments method is utilized to study the effects of the friction coefficient. The results show that the friction coefficient of the packer and the tubing had the greatest effect on contact pressure than other factors. Decreasing the rubber friction coefficient is conducive to forming the double rubber seal and increasing the maximum contact pressure working range. However, there is additionally a slight decrease in the value of maximum contact pressure. The results of the study provide valuable insight into the importance of packer design optimization.

Author(s):  
Mohammad Mehdi Kasaei ◽  
Marta C Oliveira

This work presents a new understanding on the deformation mechanics involved in the Nakajima test, which is commonly used to determine the forming limit curve of sheet metals, and is focused on the interaction between the friction conditions and the deformation behaviour of a dual phase steel. The methodology is based on the finite element analysis of the Nakajima test, considering different values of the classic Coulomb friction coefficient, including a pressure-dependent model. The validity of the finite element model is examined through a comparison with experimental data. The results show that friction affects the location and strain path of the necking point by changing the strain rate distribution in the specimen. The strain localization alters the contact status from slip to stick at a portion of the contact area from the pole to the necking zone. This leads to the sharp increase of the strain rate at the necking point, as the punch rises further. The influence of the pressure-dependent friction coefficient on the deformation behaviour is very small, due to the uniform distribution of the contact pressure in the Nakajima test. Moreover, the low contact pressure range attained cannot properly replicate real contact condition in sheet metal forming processes of advanced high strength steels.


2012 ◽  
Vol 268-270 ◽  
pp. 737-740
Author(s):  
Yang Yu ◽  
Yi Hua Dou ◽  
Fu Xiang Zhang ◽  
Xiang Tong Yang

It is necessary to know the connecting and sealing ability of premium connection for appropriate choices of different working conditions. By finite element method, the finite element model of premium connection is established and the stresses of seal section, shoulder zone and thread surface of tubing by axial tensile loads are analyzed. The results show that shoulder zone is subject to most axial stresses at made-up state, which will make distribution of stresses on thread reasonable. With the increase of axial tensile loads, stresses of thread on both ends increase and on seal section and shoulder zone slightly change. The maximum stress on some thread exceed the yield limit of material when axial tensile loads exceed 400KN. Limited axial tensile loads sharply influence the contact pressures on shoulder zone while slightly on seal section. Although the maximum contact pressure on shoulder zone drop to 0 when the axial tensile load is 600KN, the maximum contact pressure on seal section will keep on a high level.


2012 ◽  
Vol 479-481 ◽  
pp. 202-206
Author(s):  
Wan Hua Nong ◽  
Fei Gao ◽  
Rong Fu ◽  
Xiao Ming Han

The distribution of temperature on the rubbing surface is an important factor influencing the lifetime of a brake disc. With a copper-base sintered brake pad and a forge steel disc, up-to-brake experiments have been conducted on a full-scale test bench at a highest speed of 200 Km/h and a maximum braking force of 22.5 KN. The temperature distributions on brake disc surface have been acquired by an infrared thermal camera, and the contact pressure on the contact surface of the friction pair has been calculated by the finite element software ABAQUS. The results show that the area and thermal gradient of the hot bands increase with the increase of braking speed and braking force. The hot bands occur in priority at the radial location of r=200 mm and r=300 mm, and move radially in the braking process. The finite element modelling calculation indicates that the distribution of the contact pressure on the disc surface in radial direction is in a "U"-shape. The maximum contact pressure occur at the radial locations of r=200 mm and r=300 mm, and the minimum contact pressure occur in the vicinity of the mean radius of the disc. The conformity of contact pressure distributions with the practical temperature evolutions indicates that the non-uniform distribution of the contact pressure is the factor resulting in the appearance of hot bands on the disc surface.


Author(s):  
Chris Alexander ◽  
Wade Armer ◽  
Stuart Harbert

KOCH Heat Transfer Company contracted Stress Engineering Services, Inc. to perform a design/parameter study of a return bonnet used in hairpin heat exchangers that employs an elliptical flange design. The return bonnet is an important component of the heat exchanger as it can be removed to permit inspection of the heat exchanger tubes. The return bonnet is bolted to the hairpin leg flange. To maintain sealing integrity a gasket is placed between the return bonnet flange and the hairpin leg flange. The sealing efficiency of two return bonnet sizes (24-inch and 30-inch) was investigated in this study using finite element analysis. The sealing efficiency is an indication of how the contact pressure changes circumferentially around the gasket and is calculated by dividing the local contact pressure by the maximum contact pressure calculated in the gasket for each respective design. The study assessed the effects of geometric changes to the mating flanges. Using an iterative design process using finite element analysis, the elliptical flanges were optimized to maximize sealing efficiency. Upon completion of the study, the manufacturer successfully employed the modifications as evidenced with multiple successful hydrotests.


Author(s):  
Louay S. Yousuf ◽  
Yaakob K. H. Dabool

Abstract The bending deflection of the disc cam profile and the dynamic response of the follower were discussed and analyzed for three paths of contact. The objective of this paper was to study the influence of maximum contact pressure on the bending deflection of the cam profile. Numerical simulation was carried out using SolidWorks Software to simulate the follower displacement, velocity and acceleration. Finite element analysis was used taking into account the use of ANSYS package to calculate the bending deflection. The experiment setup had been done through an infrared camera device. The bending deflection of point (18) is bigger than the bending deflection of point (4) because of the bigness of radius of curvature of nose (2).


2012 ◽  
Vol 166-169 ◽  
pp. 3189-3192
Author(s):  
Jin Song Gui ◽  
Zhen Guo Li ◽  
Bo Zhang

As m value is not an inherent property of soil and affected by many factors, limited to the current level of theorey and technology, m value of soil around each pile can not be accurately taken when using “m” method to simulate the pile-soil interaction in engineering. In this paper, finite element software is used for the systematic study on the influence of m value to internal force and deformation for transverse bent of high-piled wharf. By analysis, it is considered that the influence is little and can meet the project accuracy requirements when taking m value through experience.


2006 ◽  
Vol 33 (6) ◽  
pp. 673-682 ◽  
Author(s):  
Lamya Amleh ◽  
Alaka Ghosh

This paper examines the basic influence of corrosion on bond strength at the steel–concrete interface and the associated slip and cracking. A nonlinear finite-element model is developed to account for the effect of corrosion on deterioration of the bond. Deterioration of the mechanical interaction between the corroding reinforcing steel and the concrete is modeled with the nonlinear finite-element program ABAQUS. The contact pressure normal to the steel–concrete interface is reduced when the concrete cracks, which occurs along with a decrease in the cross-sectional area of the steel bar and the decrease of the friction coefficient between the steel and the concrete. The loss of contact pressure and the decrease in the friction coefficient with the mass loss of steel bars are evaluated using pullout test specimens with different levels of rebar corrosion. Finally, the relationship between the loss of bond strength and the mass loss of the steel rebar is established. The model gives reasonably accurate predictions of bond strength for three independent experimental studies. Key words: bond, concrete, corrosion, mechanical interaction, reinforcing steels, slip, steel-concrete interface.


2019 ◽  
Vol 71 (5) ◽  
pp. 664-671
Author(s):  
Fuying Zhang ◽  
Hao Che Shui ◽  
Yufei Zhang

Purpose The purpose of this paper is based on the response surface method, the authors determined the conditions for achieving the optimum rubber-sealing performance by using the maximum contact stress as the response value. Design/methodology/approach A two-dimensional model of a compression packer rubber was established by finite-element analysis software. Under the single axial load of 53.85 MPa, the four single factors of the end-face inclination angle, subthickness, height of rubber and friction coefficient of the rubber were analyzed. Findings Results show that the optimum sealing performance of the rubber tube is achieved when the end-face angle is equal to 45º and the thickness of the rubber tube is 9 mm. The response surface designed by Box–Behnken shows that the sealing performance of the rubber tube is the optimum when the end-face inclination angle is 48.1818°, the subthickness is 9 mm, the height of rubber is 90 mm and the friction coefficient is 0.1. Verification test results show that the model is reliable and effective. Originality/value Packer operations are performed downhole, and research on real experiments is limited. In this work, the feasibility of such experiments is determined by comparing finite-element modeling with actual experiments, and the results have guiding significance for actual downhole operations.


Sign in / Sign up

Export Citation Format

Share Document