Finite element based vibration analysis of functionally graded spinning shaft system

Author(s):  
Debabrata Gayen ◽  
Tarapada Roy

The present work deals with the study of vibration and stability analysis of a functionally graded spinning shaft system using three-noded beam element based on the Timoshenko beam theory. Material properties are assumed to be graded in radial direction according to power law gradation. In the present analysis, the mixture of aluminum oxide (Al2O3) and stainless steel (SUS304) has been considered as functionally graded material where metal (SUS304) content decreases towards the outer diameter of the shaft. The functionally graded shafts has been modeled as a Timoshenko beam, which contains discrete isotropic rigid disks supported by flexible bearing. The functionally graded shaft has been modeled based on first-order shear deformation beam theory with transverse shear deformation, rotary inertia, gyroscopic effect, strain and kinetic energy of shafts by adopting three-dimensional constitutive relations. The derivation of governing equations of motion has been obtained using Hamilton’s principle. Three-noded beam element with four degrees of freedom per node has been used to solve the govering equations. In this work, the effects of both internal viscous and hysteretic damping have also been incorporated in the finite element model. Various results have been obtained such as Campbell diagram, stability speed limit, damping ratio, and time responses for functionally graded shaft and also compared with conventional steel shaft. It has been found that the responses of the functionally graded spinning shaft are significantly influenced by material properties, radial thickness, power law gradient index, and internal (viscous and hysteretic) damping. The obtained results also show the advantages of functionally graded shaft over conventional steel shaft.

2019 ◽  
Vol 25 (23-24) ◽  
pp. 2875-2893 ◽  
Author(s):  
M. Bamdad ◽  
M. Mohammadimehr ◽  
K. Alambeigi

Vibration and buckling analysis of a magneto-electro-elastic sandwich Timoshenko beam with a porous core and poly-vinylidene fluoride (PVDF) matrix reinforced by carbon nanotubes (CNTs) is considered as face layers and material properties of CNTs and PVDF are assumed to be temperature-dependent. Different CNT distribution patterns including uniform distribution, AV (which top and bottom face sheets have functionally graded-A (FG-A) and functionally graded-V (FG-V) CNT distribution patterns, respectively) and VA patterns are employed. The governing equations of motion are derived based on Timoshenko beam theory, and Navier's solution is used to solve these equations. The sandwich beam resting on a Pasternak foundation and face layers are subjected to electric and magnetic potentials. The effect of different parameters such as porosity coefficient, electric and magnetic potential, parameters of foundation, and geometrical parameters are investigated on vibration and buckling behavior of the sandwich beam. Numerical results of this paper show that porosity distribution has a significant effect on the stiffness of the sandwich beam. The results can be used for future analysis of magneto-electro-mechanical sandwich systems as actuators and sensors.


2018 ◽  
Vol 56 (3) ◽  
pp. 380 ◽  
Author(s):  
Tran Thi Thom ◽  
Nguyen Dinh Kien

Free vibration of two-directional functionally graded material (2-D FGM) beams is studied by the finite element method (FEM). The material properties are assumed to be graded in both the thickness and longitudinal directions by a power-law distribution. Equations of motion based on Timoshenko beam theory are derived from Hamilton's principle. A higher-order beam element using hierarchical functions to interpolate the displacements and rotation is formulated and employed in the analysis. In order to improve the efficiency of the element, the shear strain is constrained to constant. Validation of the derived element is confirmed by comparing the natural frequencies obtained in the present paper with the data available in the literature. Numerical investigations show that the proposed beam element is efficient, and it is capable to give accurate frequencies by a small number of elements. The effects of the material composition and aspect ratio on the vibration characteristics of the beams are examined in detail and highlighted.


2018 ◽  
Vol 10 (04) ◽  
pp. 1850043 ◽  
Author(s):  
Amir H. Eskandari ◽  
Mostafa Baghani ◽  
Saeed Sohrabpour

In this paper, employing a thermomechanical small strain constitutive model for shape memory polymers (SMP), a beam element made of SMPs is presented based on the kinematic assumptions of Timoshenko beam theory. Considering the low stiffness of SMPs, the necessity for developing a Timoshenko beam element becomes more prominent. This is due to the fact that relatively thicker beams are required in the design procedure of smart structures. Furthermore, in the design and optimization process of these structures which involves a large number of simulations, we cannot rely only on the time consuming 3D finite element analyses. In order to properly validate the developed formulations, the numeric results of the present work are compared with those of 3D finite element results of the authors, previously available in the literature. The parametric study on the material parameters, e.g., hard segment volume fracture, viscosity coefficient of different phases, and the external force applied on the structure (during the recovery stage) are conducted on the thermomechanical response of a short I-shape SMP beam. For instance, the maximum beam deflection error in one of the studied examples for the Euler–Bernoulli beam theory is 7.3%, while for the Timoshenko beam theory, is 1.5% with respect to the 3D FE solution. It is noted that for thicker or shorter beams, the error of the Euler–Bernoulli beam theory even more increases. The proposed beam element in this work could be a fast and reliable alternative tool for modeling 3D computationally expensive simulations.


Author(s):  
Mohamed-Ouejdi Belarbi ◽  
Abdelhak Khechai ◽  
Aicha Bessaim ◽  
Mohammed-Sid-Ahmed Houari ◽  
Aman Garg ◽  
...  

In this paper, the bending behavior of functionally graded single-layered, symmetric and non-symmetric sandwich beams is investigated according to a new higher order shear deformation theory. Based on this theory, a novel parabolic shear deformation function is developed and applied to investigate the bending response of sandwich beams with homogeneous hardcore and softcore. The present theory provides an accurate parabolic distribution of transverse shear stress across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the functionally graded sandwich beam without using any shear correction factors. The governing equations derived herein are solved by employing the finite element method using a two-node beam element, developed for this purpose. The material properties of functionally graded sandwich beams are graded through the thickness according to the power-law distribution. The predictive capability of the proposed finite element model is demonstrated through illustrative examples. Four types of beam support, i.e. simply-simply, clamped-free, clamped–clamped, and clamped-simply, are used to study how the beam deflection and both axial and transverse shear stresses are affected by the variation of volume fraction index and beam length-to-height ratio. Results of the numerical analysis have been reported and compared with those available in the open literature to evaluate the accuracy and robustness of the proposed finite element model. The comparisons with other higher order shear deformation theories verify that the proposed beam element is accurate, presents fast rate of convergence to the reference results and it is also valid for both thin and thick functionally graded sandwich beams. Further, some new results are reported in the current study, which will serve as a benchmark for future research.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arnab Bose ◽  
Prabhakar Sathujoda ◽  
Giacomo Canale

Abstract The present work aims to analyze the natural and whirl frequencies of a slant-cracked functionally graded rotor-bearing system using finite element analysis for the flexural vibrations. The functionally graded shaft is modelled using two nodded beam elements formulated using the Timoshenko beam theory. The flexibility matrix of a slant-cracked functionally graded shaft element has been derived using fracture mechanics concepts, which is further used to develop the stiffness matrix of a cracked element. Material properties are temperature and position-dependent and graded in a radial direction following power-law gradation. A Python code has been developed to carry out the complete finite element analysis to determine the Eigenvalues and Eigenvectors of a slant-cracked rotor subjected to different thermal gradients. The analysis investigates and further reveals significant effect of the power-law index and thermal gradients on the local flexibility coefficients of slant-cracked element and whirl natural frequencies of the cracked functionally graded rotor system.


Author(s):  
Ahmed Raza ◽  
Himanshu Pathak ◽  
Mohammad Talha

In this work, stochastic perturbation-based vibration characteristics of cracked bi-material and functionally graded material (FGM) domain with uncertain material properties are investigated using the extended finite element method. The level set function is implemented to track the geometrical discontinuities. The partition of unity-based extrinsic enrichment technique is employed to model the crack and material interface. The exponential law is used to model the graded material properties of FGM. The First-order perturbation technique (FOPT) is implemented to predict the standard deviation of natural frequency for the given uncertainties in the material properties. The numerical results are presented to show the effect of geometrical discontinuities and material randomness on vibration characteristics.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2198 ◽  
Author(s):  
Hoang Nam Nguyen ◽  
Tran Thi Hong ◽  
Pham Van Vinh ◽  
Do Van Thom

In this paper, a 2-node beam element is developed based on Quasi-3D beam theory and mixed formulation for static bending of functionally graded (FG) beams. The transverse shear strains and stresses of the proposed beam element are parabolic distributions through the thickness of the beam and the transverse shear stresses on the top and bottom surfaces of the beam vanish. The proposed beam element is free of shear-looking without selective or reduced integration. The material properties of the functionally graded beam are assumed to vary according to the power-law index of the volume fraction of the constituents through the thickness of the beam. The numerical results of this study are compared with published results to illustrate the accuracy and convenience rate of the new beam element. The influence of some parametrics on the bending behavior of FGM beams is investigated.


Sign in / Sign up

Export Citation Format

Share Document