Mechanics of metallic nanoparticles inside lipid nanotubes: Suction and acceptance energies

Author(s):  
F Sadeghi ◽  
R Ansari ◽  
M Darvizeh

Lipid nanotubes with well-designed cylindrical structures, tunable dimensions and biocompatible membrane surfaces have found potential applications such as templates to create diverse one-dimensional nanostructures and nanocarriers for drug or gene delivery. In this regard, knowing the encapsulation process is of crucial importance for such developments. The aim of this paper is to study the suction and acceptance phenomena of metallic nanoparticles, and in particular silver and gold, inside lipid nanotubes using the continuum approximation and the 6–12 Lennard-Jones potential function. The nanoparticle is modelled as a perfect sphere and the lipid nanotube is assumed to comprise six layers, namely two head groups, two intermediate layers and two tail groups. Analytical expressions are derived through undertaking surface and volume integrals to evaluate van der Waals potential energy and interaction force of a nanoparticle entering a semi-infinite lipid nanotube. These expressions are then employed to determine the suction and acceptance energies of system. To ascertain the accuracy of the proposed analytical expressions, the multiple integrals of van der Waals interactions are evaluated numerically based on the differential quadrature method. A comprehensive study is conducted to get an insight into the effects of different geometrical parameters including radius of nanoparticles, innermost radius of lipid nanotube, head group and tail group thicknesses on the nature of suction and acceptance energies and van der Waals interactions. Numerical results show that maximum suction energy increases by enlarging the nanoparticle size, while it decreases by increasing the head group thickness or the tail group thickness. It is further found that gold nanoparticle experiences higher maximum suction energies inside lipid nanotubes compared to silver nanoparticle.

2013 ◽  
Vol 135 (5) ◽  
Author(s):  
R. Ansari ◽  
F. Sadeghi ◽  
A. Alipour

This paper aims to present a thorough investigation into the mechanics of a C60 fullerene oscillating within the center of a carbon nanotube bundle. To model this nanoscale oscillator, a continuum approximation is used along with a classical Lennard–Jones potential function. Accordingly, new semianalytical expressions are given in terms of single integrals to evaluate van der Waals potential energy and interaction force between the two nanostructures. Neglecting the frictional effects and using the actual van der Waals force distribution, the equation of motion is directly solved. Furthermore, a new semianalytical formula is derived from the energy equation to determine the precise oscillation frequency. This new frequency formula has the advantage of incorporating the effects of initial conditions and geometrical parameters. This enables us to conduct a comprehensive study of the effects of significant system parameters on the oscillatory behavior. Based upon this study, the variation of oscillation frequency with geometrical parameters (length of tubes or number of tubes in bundle) and initial energy (potential energy plus kinetic energy) is shown.


NANO ◽  
2007 ◽  
Vol 02 (03) ◽  
pp. 175-179 ◽  
Author(s):  
W. ZHOU ◽  
Y. HUANG ◽  
B. LIU ◽  
J. WU ◽  
K. C. HWANG ◽  
...  

A continuum model is developed based on the van der Waals interactions to study the adhesion between multi-wall carbon nanotubes (MWCNT) and substrates. Simple, analytical expressions for the binding energy and pulling force are obtained in terms of the MWCNT radius, number of walls, and parameters in the van der Waals potential. For a 1 cm by 1 cm template with densely packed MWCNTs (50 nm in spacing), the total pulling force can reach 26.6 N and 21.9 N for the graphite and polyethylene substrates, respectively.


Author(s):  
R. Ansari ◽  
F. Sadeghi

There are many new nanomechanical devices created based on carbon nanostructures among which gigahertz oscillators have generated considerable interest to many researchers. In the present paper, the oscillatory behavior of ellipsoidal fullerenes inside single-walled carbon nanotubes is studied comprehensively. Utilizing the continuum approximation along with Lennard–Jones potential, new semi-analytical expressions are presented to evaluate the potential energy and van der Waals interaction force of such systems. Neglecting the frictional effects, the equation of motion is directly solved on the basis of the actual force distribution between the interacting molecules. In addition, a semi-analytical expression is given to determine the oscillation frequency into which the influence of initial conditions is incorporated. Based on the newly derived expression, a thorough study on the various aspects of operating frequencies under different system variables such as geometrical parameters and initial conditions is conducted. Based on the present study, some new aspects of such nano-oscillators have been disclosed.


Author(s):  
F. Sadeghi ◽  
R. Ansari

On the basis of the continuum approximation along with Lennard–Jones potential function, new semi-analytical expressions are presented to evaluate the van der Waals interactions between an ellipsoidal fullerene and a semi-infinite single-walled carbon nanotube. Using direct method, these expressions are also extended to model ellipsoidal carbon onions inside multiwalled carbon nanotubes. In addition, acceptance and suction energies which are two noticeable issues for medical applications such as drug delivery are determined. Neglecting the frictional effects and by imposing some simplifying assumptions on the van der Waals interaction force, a simple formula is given to evaluate the oscillation frequency of ellipsoidal carbon onions inside multiwalled carbon nanotubes. Also, the effects of the number of tube shells and ellipsoidal carbon onion shells on the oscillatory behavior are examined. It is shown that there exists an optimal value for the number of tube shells beyond which the oscillation frequency remains unchanged.


2000 ◽  
Vol 65 (12) ◽  
pp. 1950-1958 ◽  
Author(s):  
Michal Hušák ◽  
Bohumil Kratochvíl ◽  
Ivana Císařová ◽  
Alexandr Jegorov

Two isomorphous clathrates formed by dihydrocyclosporin A or cyclosporin V with tert-butyl methyl ether are reported and compared with the structures of related P21-symmetry cyclosporin clathrates. The cyclosporin molecules in both structures are associated via van der Waals interactions forming cavities occupied by solvent molecules (cyclosporin : tert-butyl methyl ether is 1 : 2).


2021 ◽  
Vol 154 (12) ◽  
pp. 124306
Author(s):  
Tao Lu ◽  
Daniel A. Obenchain ◽  
Jiaqi Zhang ◽  
Jens-Uwe Grabow ◽  
Gang Feng

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Woonbae Sohn ◽  
Ki Chang Kwon ◽  
Jun Min Suh ◽  
Tae Hyung Lee ◽  
Kwang Chul Roh ◽  
...  

AbstractTwo-dimensional MoS2 film can grow on oxide substrates including Al2O3 and SiO2. However, it cannot grow usually on non-oxide substrates such as a bare Si wafer using chemical vapor deposition. To address this issue, we prepared as-synthesized and transferred MoS2 (AS-MoS2 and TR-MoS2) films on SiO2/Si substrates and studied the effect of the SiO2 layer on the atomic and electronic structure of the MoS2 films using spherical aberration-corrected scanning transition electron microscopy (STEM) and electron energy loss spectroscopy (EELS). The interlayer distance between MoS2 layers film showed a change at the AS-MoS2/SiO2 interface, which is attributed to the formation of S–O chemical bonding at the interface, whereas the TR-MoS2/SiO2 interface showed only van der Waals interactions. Through STEM and EELS studies, we confirmed that there exists a bonding state in addition to the van der Waals force, which is the dominant interaction between MoS2 and SiO2. The formation of S–O bonding at the AS-MoS2/SiO2 interface layer suggests that the sulfur atoms at the termination layer in the MoS2 films are bonded to the oxygen atoms of the SiO2 layer during chemical vapor deposition. Our results indicate that the S–O bonding feature promotes the growth of MoS2 thin films on oxide growth templates.


2019 ◽  
Vol 3 (7) ◽  
pp. 1462-1470 ◽  
Author(s):  
Weiwei Wei ◽  
Rohit L. Vekariy ◽  
Chuanting You ◽  
Yafei He ◽  
Ping Liu ◽  
...  

Highly dense thin films assembled from cellulose nanofibers and reduced graphene oxide via van der Waals interactions to realize ultrahigh volumetric double-layer capacitances.


Sign in / Sign up

Export Citation Format

Share Document