A complex-number-domain-based conceptual design synthesis for multidisciplinary products

Author(s):  
Bin Chen ◽  
You-Bai Xie

With the increase of the customer demands for the products, multidisciplinary products are gradually becoming more competitive than the traditional products. Considering conceptual design synthesis is the core phase of the product design and its result is the starting point of the next detail design works, if the rich resources in multiple disciplinary domains can be fully used during this phase, the efficiency of multidisciplinary product design will be largely promoted. Therefore, we proposed a novel conceptual design synthesis system for multidisciplinary products, which consists of three parts, i.e. basic framework, complex-number-domain-based mathematical model, and achieving approach. In the framework, three groups of concepts were defined and the conceptual design synthesis was concluded into three steps. The model can completely describe and modularize the function units which are the basic components of a design scheme. Based on the model, the achieving approach can automatically generate stable objective function unit chains which can directly construct the design scheme. Finally, the design of a multifunctional agricultural hydroelectric power system was taken as an illustration to prove the practicability of this proposed system.

Author(s):  
Bin Chen ◽  
You-Bai Xie

The trend of large-scale development of design industry requires efficient and full use of the rich design resources in the distributed multi-disciplinary resource environment. However, the designers are susceptible to many subjective and objective impacts, like knowledge structure, computing capability, geographic position, and administrative division. These impacts make the usage of design resources unstable and inefficient. Therefore, this paper proposed a computer-assisted automatic conceptual design system (CACDS). This system assumes that the design resources in the distributed multi-disciplinary resource environment exist in the form of functional elements with the same format, so that, the geographic, administrative, and disciplinary barriers in the design process can be broken, and the design resources can be fully used. CACDS is based on a group of basic concepts and their representations, its core is a functional solution generating algorithm, which is used to automatically generate functional solutions. As the result of the conceptual design, these functional solutions are also the starting point of the following detail design phase. Finally, a lighting system for underground greenhouse is designed as an illustrative case to validate the feasibility of the proposed CACDS.


Author(s):  
Patricia Kristine Sheridan ◽  
Jason A Foster ◽  
Geoffrey S Frost

All Engineering Science students at the University of Toronto take the cornerstone Praxis Sequence of engineering design courses. In the first course in the sequence, Praxis I, students practice three types of engineering design across three distinct design projects. Previously the final design project had the students first frame and then develop conceptual design solutions for a self-identified challenge. While this project succeeded in providing an appropriate foundational design experience, it failed to fully prepare students for the more complex design experience in Praxis II. The project also failed to ingrain the need for clear and concise engineering communication, and the students’ lack of understanding of detail design inhibited their ability to make practical and realistic design decisions. A revised Product Design project in Praxis I was designed with the primary aims of: (a) pushing students beyond the conceptual design phase of the design process, and (b) simulating a real-world work environment by: (i) increasing the interdependence between student teams and (ii) increasing the students’ perceived value of engineering communication.


Author(s):  
Bin Chen ◽  
You-Bai Xie

With the help of the well-developed Internet technologies, designers can obtain numerous resources distributed all over the world. These resources actually construct the distributed resource environment. If this environment can be fully considered and applied during the key and starting phase of the product design, the conceptual design synthesis, the design efficiency will be largely promoted and the design product will have better quality, innovation, and competition. Therefore, a function unit integrating approach was proposed for the conceptual design synthesis in the distributed resource environment. This approach is based on the integration of function units which represent the resources in the distributed resource environment. With the proposed computer algorithm, these function units can be firstly connected up into appropriate function unit chains and, then, improved into the final function unit set as the result of the conceptual design synthesis. Based on this approach, a computer program called function unit integrating system was established. And finally, the design process of a friction testing machine was completed by function unit integrating system as an illustrative case.


2020 ◽  
Author(s):  
Eleonora Diamanti ◽  
Inda Setyawati ◽  
Spyridon Bousis ◽  
leticia mojas ◽  
lotteke Swier ◽  
...  

Here, we report on the virtual screening, design, synthesis and structure–activity relationships (SARs) of the first class of selective, antibacterial agents against the energy-coupling factor (ECF) transporters. The ECF transporters are a family of transmembrane proteins involved in the uptake of vitamins in a wide range of bacteria. Inhibition of the activity of these proteins could reduce the viability of pathogens that depend on vitamin uptake. Because of their central role in the metabolism of bacteria and their absence in humans, ECF transporters are novel potential antimicrobial targets to tackle infection. The hit compound’s metabolic and plasma stability, the potency (20, MIC Streptococcus pneumoniae = 2 µg/mL), the absence of cytotoxicity and a lack of resistance development under the conditions tested here suggest that this scaffold may represent a promising starting point for the development of novel antimicrobial agents with an unprecedented mechanism of action.<br>


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1240
Author(s):  
Bjorn Criel ◽  
Steff Taelman ◽  
Wim Van Criekinge ◽  
Michiel Stock ◽  
Yves Briers

Phage lytic proteins are a clinically advanced class of novel enzyme-based antibiotics, so-called enzybiotics. A growing community of researchers develops phage lytic proteins with the perspective of their use as enzybiotics. A successful translation of enzybiotics to the market requires well-considered selections of phage lytic proteins in early research stages. Here, we introduce PhaLP, a database of phage lytic proteins, which serves as an open portal to facilitate the development of phage lytic proteins. PhaLP is a comprehensive, easily accessible and automatically updated database (currently 16,095 entries). Capitalizing on the rich content of PhaLP, we have mapped the high diversity of natural phage lytic proteins and conducted analyses at three levels to gain insight in their host-specific evolution. First, we provide an overview of the modular diversity. Secondly, datamining and interpretable machine learning approaches were adopted to reveal host-specific design rules for domain architectures in endolysins. Lastly, the evolution of phage lytic proteins on the protein sequence level was explored, revealing host-specific clusters. In sum, PhaLP can act as a starting point for the broad community of enzybiotic researchers, while the steadily improving evolutionary insights will serve as a natural inspiration for protein engineers.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3469
Author(s):  
Ji Han ◽  
Pingfei Jiang ◽  
Peter R. N. Childs

Although products can contribute to ecosystems positively, they can cause negative environmental impacts throughout their life cycles, from obtaining raw material, production, and use, to end of life. It is reported that most negative environmental impacts are decided at early design phases, which suggests that the determination of product sustainability should be considered as early as possible, such as during the conceptual design stage, when it is still possible to modify the design concept. However, most of the existing concept evaluation methods or tools are focused on assessing the feasibility or creativity of the concepts generated, lacking the measurements of sustainability of concepts. The paper explores key factors related to sustainable design with regard to environmental impacts, and describes a set of objective measures of sustainable product design concept evaluation, namely, material, production, use, and end of life. The rationales of the four metrics are discussed, with corresponding measurements. A case study is conducted to demonstrate the use and effectiveness of the metrics for evaluating product design concepts. The paper is the first study to explore the measurement of product design sustainability focusing on the conceptual design stage. It can be used as a guideline to measure the level of sustainability of product design concepts to support designers in developing sustainable products. Most significantly, it urges the considerations of sustainability design aspects at early design phases, and also provides a new research direction in concept evaluation regarding sustainability.


Author(s):  
Daniel Krus ◽  
Katie Grantham Lough

When designing a product, the earlier the potential risks can be identified, the more costs can be saved, as it is easier to modify a design in its early stages. Several methods exist to analyze the risk in a system, but all require a mature design. However, by applying the concept of “common interfaces” to a functional model and utilizing a historical knowledge base, it is possible to analyze chains of failures during the conceptual phase of product design. This paper presents a method based on these “common interfaces” to be used in conjunction with other methods such as Risk in Early Design in order to allow a more complete risk analysis during the conceptual design phase. Finally, application of this method is demonstrated in a design setting by applying it to a thermal control subsystem.


Author(s):  
Julian R. Eichhoff ◽  
Felix Baumann ◽  
Dieter Roller

In this paper we demonstrate and compare two complementary approaches to the automatic generation of production rules from a set of given graphs representing sample designs. The first approach generates a complete rule set from scratch by means of frequent subgraph discovery. Whereas the second approach is intended to learn additional rules that fit an existing, yet incomplete, rule set using genetic programming. Both approaches have been developed and tested in the context of an application for automated conceptual engineering design, more specifically functional decomposition. They can be considered feasible, complementary approaches to the automatic inference of graph rewriting rules for conceptual design applications.


Since early 1980, BP has been developing the conceptual design of a Single-Well Oil Production System or SWOPS. This paper outlines the concept and discusses the design and the operational criteria that have been applied in this early work. It further examines some of the innovative areas of technology that have been included in this new approach and outlines the work of the detail design phase, which has just started.


Author(s):  
R. J. Engel ◽  
P. J. Tyler ◽  
L. R. Wood ◽  
D. T. Entenmann

Westinghouse has been a strong supporter of Reliability, Availability, and Maintainability (RAM) principles during product design and development. This is exemplified by the actions taken during the design of the 501F engine to ensure that high reliability and availability was achieved. By building upon past designs, utilizing those features most beneficial, and improving other areas, a highly reliable product was developed. A full range of RAM tools and techniques were utilized to achieve this result, including reliability allocations, modelling, and effective redesign of critical components. These activities began during the conceptual design phase and will continue throughout the life cycle of these engines until they are decommissioned.


Sign in / Sign up

Export Citation Format

Share Document