Dynamic performance of over-constrained planar mechanisms with multiple revolute clearance joints

Author(s):  
Haidong Yu ◽  
Jian Zhang ◽  
Hao Wang

The clearances of joints in a rigid multibody system may deteriorate the motion accuracy and even cause vibrations, noise and fatigue failure of structures. In over-constrained mechanisms, the number of degree-of-freedoms is more than that of independent coordinates which leads to numerical challenges in solving the underdetermined force equilibrium equations. A comprehensive study on the dynamic model and the performance of an over-constrained planar parallelogram mechanism with multiple clearance joints is presented in this paper. Since a common angular coordinate exists in the clearance joint associated with the redundant constraint, the degree-of-freedoms are revised by eliminating the number of redundant constraints. In planar analysis, the location of mass center and the orientation of the body reference with respect to the inertial frame are selected as the generalized coordinates of the components. Clearance joints are equivalent as the spring-damper elements and the contact forces are introduced into the dynamic equations by force constraints. The developed computational algorithm is implemented by MATLAB and may analyze the dynamic performance of this mechanism due to the elimination of kinematic constraints and the nonlinear contact-impact behavior in the clearance joints. Meanwhile, an orthogonal experimental design based on a quantitative analysis method demonstrates that the clearance size and the location of clearance joints affect the kinematic accuracy and counterbalance moment of the mechanism.


Author(s):  
P. Flores ◽  
J. Ambro´sio ◽  
J. C. P. Claro ◽  
H. M. Lankarani

This work deals with a methodology to assess the influence of the spherical clearance joints in spatial multibody systems. The methodology is based on the Cartesian coordinates, being the dynamics of the joint elements modeled as impacting bodies and controlled by contact forces. The impacts and contacts are described by a continuous contact force model that accounts for geometric and mechanical characteristics of the contacting surfaces. The contact force is evaluated as function of the elastic pseudo-penetration between the impacting bodies, coupled with a nonlinear viscous-elastic factor representing the energy dissipation during the impact process. A spatial four bar mechanism is used as an illustrative example and some numerical results are presented, being the efficiency of the developed methodology discussed in the process of their presentation. The results obtained show that the inclusion of clearance joints in the modelization of spatial multibody systems significantly influences the prediction of components’ position and drastically increases the peaks in acceleration and reaction moments at the joints. Moreover, the system’s response clearly tends to be nonperiodic when a clearance joint is included in the simulation.



Author(s):  
Khaled E. Zaazaa ◽  
Brian Whitten ◽  
Brian Marquis ◽  
Erik Curtis ◽  
Magdy El-Sibaie ◽  
...  

Accurate prediction of railroad vehicle performance requires detailed formulations of wheel-rail contact models. In the past, most dynamic simulation tools used an offline wheel-rail contact element based on look-up tables that are used by the main simulation solver. Nowadays, the use of an online nonlinear three-dimensional wheel-rail contact element is necessary in order to accurately predict the dynamic performance of high speed trains. Recently, the Federal Railroad Administration, Office of Research and Development has sponsored a project to develop a general multibody simulation code that uses an online nonlinear three-dimensional wheel-rail contact element to predict the contact forces between wheel and rail. In this paper, several nonlinear wheel-rail contact formulations are presented, each using the online three-dimensional approach. The methods presented are divided into two contact approaches. In the first Constraint Approach, the wheel is assumed to remain in contact with the rail. In this approach, the normal contact forces are determined by using the technique of Lagrange multipliers. In the second Elastic Approach, wheel/rail separation and penetration are allowed, and the normal contact forces are determined by using Hertz’s Theory. The advantages and disadvantages of each method are presented in this paper. In addition, this paper discusses future developments and improvements for the multibody system code. Some of these improvements are currently being implemented by the University of Illinois at Chicago (UIC). In the accompanying “Part 2” and “Part 3” to this paper, numerical examples are presented in order to demonstrate the results obtained from this research.



2013 ◽  
Vol 278-280 ◽  
pp. 385-388 ◽  
Author(s):  
Shao Gang Liu ◽  
Qiu Jin

This paper presents a analytical method to calculate the minimum clamping force to prevent slippage between the workpiece and spherical-tipped fixture elements during milling process. After the contact deformation between the workpiece and spherical-tipped fixture element is determined, the relationships between the workpiece displacement and the contact deformations are obtained. Based on the static equilibrium equations, these equations are combined and linear equations are obtained to calculate the tangential contact forces between the workpiece and spherical-tipped fixture element. According to the maximum tangential contact force, the minimum clamping force to prevent slippage between the workpiece and spherical-tipped fixture elements is calculated. At last, this method is illustrated with a simulation example.



Author(s):  
E. F. Fichter ◽  
D. R. Kerr

Abstract A walking machine design originating from observations of insects is presented. The primary concept derived from insects is a leg used to apply force to the body without applying significant moments about the point of body attachment. This is accomplished with legs which have kinematic equivalents to ball-and-socket joints at body attachment and ground contact, with joints in the middle which only change distance between body and ground. Standing and walking with 6 legs of this design requires careful attention to static equilibrium equations but does not necessitate a control system which actively distributes forces to the legs. This paper considers necessary observational data, assumptions on which control is based, mathematical development for control and problems such as foot slip.



2021 ◽  
Vol 13 (1) ◽  
pp. 68-77
Author(s):  
Igor Мarmut ◽  
◽  
Andriy Kashkanov ◽  
Vitaliy Kashkanov ◽  
◽  
...  

The article discusses the issues of modeling conditions for obtaining diagnostic information about complex objects. As an example, the study of the braking qualities of four-wheel drive cars on an inertial roller stand is considered. Diagnosing the technical condition of cars from the point of view of traffic safety is one of the most important problems. This is especially important for systems whose technical condition affects traffic safety: especially braking systems. Foreign and domestic experience testifies to the effectiveness of instrumental control. The diagnostic equipment includes roller stands, on which you can check the braking properties of cars. As shown by many studies, in particular, carried out at the Department of Technical Operation and Service of Automobiles, KhNADU (HADI), inertial stands provide more reliable information about the technical condition of the car. Such stands allow you to reproduce the real speed and thermal modes of the brakes (especially those equipped with ABS). To improve the accuracy of diagnosing a car on a roller stand, it is necessary to have an idea of the nature of the interaction of the car wheels with the rollers. The studies of wheel rolling on the stand rollers have been carried out by many authors since the 80s of the last century. However, all these studies were carried out on uniaxial stands and for mono-drive vehicles. Nowadays, a large number of passenger cars have four-wheel drive. Rolling of the wheels of such cars on rollers and their interaction has practically not been studied. Therefore, a return to the study of this issue is relevant. A power model of the system of interaction between the car and the stand has been developed, taking into account the design features of the stand and the design features of the car's suspension. The power model of the system under consideration contains the equilibrium equations of the body and two bridges and the equations of motion of the rollers and wheels of the car. Based on the results of the analysis of the acting forces in the "car-stand" system, the braking moments on the wheels M and the coefficients of the use of the load q during the braking tests of a 4x4 vehicle were determined. The obtained research results allowed to improve the theory of interaction of a car wheel with the rollers of an inertial diagnostic stand.



Author(s):  
Jiun-Ru Chen ◽  
Wei-En Chen ◽  
CH Liu ◽  
Yin-Tien Wang ◽  
CB Lin ◽  
...  

A procedure for inverse kinetic analysis on two hard fingers grasping a hard sphere is proposed in this study. Contact forces may be found for given linear and angular accelerations of a spherical body. Elastic force-displacement relations predicted by Hertz contact theory are used to remove the indeterminancy produced by rigid body modelling. Two types of inverse kinetic analysis may be dealt with. Firstly, as the fingers impose a given tightening displacement on the body, and carry it to move with known accelerations, corresponding grasping forces may be determined by a numerical procedure. In this procedure one contact force may be chosen as the principal unknown, and all other contact forces are expressed in terms of this force. The numerical procedure is hence very efficient since it deals with a problem with only one unknown. The solution procedure eliminates slipping thus only nonslip solutions, if they exist, are found. Secondly, when the body is moving with known accelerations, if the grasping direction of the two fingers is also known, then the minimum tightening displacement required for non-sliding grasping may be obtained in closed form. In short, the proposed technique deals with a grasping system that has accelerations, and in this study the authors show that indeterminancy may be used to reduce the complexity of the problem.



Author(s):  
Pavlina Mihaylova ◽  
Alessandro Pratellesi ◽  
Niccolò Baldanzini ◽  
Marco Pierini

Concept FE models of the vehicle structure are often used to optimize it in terms of static and dynamic stiffness, as they are parametric and computationally inexpensive. On the other hand they introduce modeling errors with respect to their detailed FE equivalents due to the simplifications made. Even worse, the link between the concept and the detailed FE model can be sometimes lost after optimization. The aim of this paper is to present and validate an alternative optimization approach that uses the detailed FE model of the vehicle body-in-white instead of its concept representation. Structural modifications of this model were applied in two different ways — by local joint modifications and by using mesh morphing techniques. The first choice was motivated by the strong influence of the structural joints on the global vehicle performance. For this type of modification the plate thicknesses of the most influent car body joints were changed. In the second case the overall car dimensions were modified. The drawback of using detailed FE models of the vehicle body is that they can be times bigger than their concept counterparts and can thus require considerably more time for structural analysis. To make the approach proposed in this work a feasible alternative for optimization in the concept phase response surface models were introduced. With them the global static and dynamic performance of the body-in-white was represented by means of approximating polynomials. Optimization on such mathematical models is fast, so the choice of the optimization algorithm is not limited only among local-search strategies. In the current study Genetic Algorithm was used to increase the chances for finding better design alternatives. Two different optimization problems were defined and solved. Their final solutions were presented and compared in terms of structural modifications and resulting responses. The approach in this paper can be successfully used in the concept phase as it is fast and reliable and at the same time it avoids the problems typical for concept models.



Author(s):  
Ahmed A. Shabana ◽  
Martin B. Hamper ◽  
James J. O’Shea

In vehicle system dynamics, the effect of the gyroscopic moments can be significant during curve negotiations. The absolute angular velocity of the body can be expressed as the sum of two vectors; one vector is due to the curvature of the curve, while the second vector is due to the rate of changes of the angles that define the orientation of the body with respect to a coordinate system that follows the body motion. In this paper, the configuration of the body in the global coordinate system is defined using the trajectory coordinates in order to examine the effect of the gyroscopic moments in the case of curve negotiations. These coordinates consist of arc length, two relative translations and three relative angles. The relative translations and relative angles are defined with respect to a trajectory coordinate system that follows the motion of the body on the curve. It is shown that when the yaw and roll angles relative to the trajectory coordinate system are constrained and the motion is predominantly rolling, the effect of the gyroscopic moment on the motion becomes negligible, and in the case of pure rolling and zero yaw and roll angles, the generalized gyroscopic moment associated with the system degrees of freedom becomes identically zero. The analysis presented in this investigation sheds light on the danger of using derailment criteria that are not obtained using laws of motion, and therefore, such criteria should not be used in judging the stability of railroad vehicle systems. Furthermore, The analysis presented in this paper shows that the roll moment which can have a significant effect on the wheel/rail contact forces depends on the forward velocity in the case of curve negotiations. For this reason, roller rigs that do not allow for the wheelset forward velocity cannot capture these moment components, and therefore, cannot be used in the analysis of curve negotiations. A model of a suspended railroad wheelset is used in this investigation to study the gyroscopic effect during curve negotiations.



Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 554
Author(s):  
Fehmi Nair ◽  
Mustafa Hamamcı

The objective of this study is to investigate the impact behavior of iron-based composites reinforced with boron carbide (B4C) particles and in-situ synthesized iron borides (Fe2B/FeB). The composite specimens (Fe/B4C) were fabricated by hot-pressing under a pressure of 250 MPa at 500 °C, and sintered at a temperature of 1000 °C. The effects of the reinforcement ratio on the formation of in-situ borides and impact behavior were investigated by means of different volume fractions of B4C inside the iron matrix: 0% (un-reinforced), 5%, 10%, 20%, and 30%. Drop-weight impact tests were performed by an instrumented Charpy impactor on reinforced and un-reinforced test specimens. The results of the impact tests were supported with microstructural and fractographical analysis. As a result of in-situ reactions between the Fe matrix and B4C particles, Fe2B phases were formed in the iron matrix. The iron borides, formed in the iron matrix during sintering, heavily affected the hardness and the morphology of the fractured surface. Due to the high amount of B4C (over 10%), porosity played a major role in decreasing the contact forces and fracture energy. The results showed that the in-situ synthesized iron boride phases affect the impact properties of the Fe/B4C composites.



Sign in / Sign up

Export Citation Format

Share Document