Coupling dynamic modelling of a flexible manipulator driven by servo joint using experimental identification method

Author(s):  
Bin Wang

In this paper, the coupling dynamic model of a flexible manipulator driven by servo joint is established using experimental identification method. The dynamic model of the servo joint is proposed, which consists of a direct current servo motor, a harmonic gear reducer and a servo controller. By fitting the experimental data for the forward and inverse rotation of the motor, the coulomb friction constant and viscosity friction coefficient are obtained. Then, two transform function models that represent the system coupling dynamics are proposed. The input and output variables for one model are the control voltage of the servo controller and the angular displacement of motor. And for the other model, the input and output are the control voltage of the servo controller and the strain output measured by the strain gauges. Using the Pseudo-random binary sequence (PRBS) as the input signal, both the driven model of the servo joint and the vibration model of the flexible manipulator are identified by experimental identification. Experimental results show that the two identified models are in good agreement with the dynamic response of the experimental setup, both for the PRBS and sinusoidal excitation signals. Accordingly, the coupling dynamic models of the proposed system are obtained.

2019 ◽  
Vol 52 (1-2) ◽  
pp. 122-130 ◽  
Author(s):  
Bin Wang ◽  
Junqiang Lou

This paper formulates a coupling dynamic model for a flexible manipulator system with harmonic drive using experimental identification method. Parameters of the driven model of the harmonic joint and parameters of coupling vibration model of the flexible manipulator are identified. Accordingly, coupling dynamic models of the proposed system are obtained. Coulomb friction of the joint is identified by step current excitation and uniform rotation experiments at a low speed. Then, the transfer function model of the harmonic joint is established and identified by a pseudorandom binary sequence excitation. And predicted outputs of the obtained model are in good agreement with the experimental setup. Relationships between strain of the flexible manipulator and coupling torque are presented by theoretical derivation. Based on the theoretical model, transfer function from the angular displacement of the servo motor to the coupling torque is identified. Experimental results show this identified model match well with the proposed structure, both in the time and frequency domain. As a result, coupling dynamic modelling of the flexible manipulator system with harmonic drive is accomplished.


Robotica ◽  
1989 ◽  
Vol 7 (4) ◽  
pp. 327-337 ◽  
Author(s):  
T. G. Lim ◽  
H. S. Cho ◽  
W. K. Chung

SUMMARYAccurate modeling of robot dynamics is a prerequisite for the design of model-based control schemes and enhancement of the performance of the robot. The dynamic parameters associated with a pseudo-inertia matrix are often difficult to identify accurately because the inertia torques are small in comparison to gravity loadings, thus creating signal processing problem. The identification method presented in this paper utilizes a balancing mechanism which increases the estimation accuracy of the dynamic parameters. The balancing mechanism has the effect of amplifying the inertia-related torque signal by eliminating gravity loadings acting on the robot joints. A series of motion data were experimentally obtained through sequential test steps. By incorporating the measured information about joint torques, angular positions, velocities and accelerations the least square algorithm was used to identify the dynamic parameters. The estimated values were converted to those of the original robot model to obtain its dynamic model parameters. The identified robot dynamic model was shown to be accurate enough to predict the actual robot motions.


Mechanika ◽  
2020 ◽  
Vol 26 (3) ◽  
pp. 212-220
Author(s):  
Zixue DU ◽  
Zhen YANG ◽  
Zhouzhou XU ◽  
Junchao ZHOU* ◽  
Zhongwei HOU

Based on the Lagrange equation, the linear and nonlinear dynamic models of straddle monorail pantograph considering the lateral vibration of bogie are derived. On this basis, the lateral coupling dynamic model of pantograph-catenary is established. Newmark method is used to solve the pantograph-catenary coupling dynamic model. In order to evaluate the applicability of the two models,this paper analyzed the contact force response of two model with different speeds. The reasearch show that when the speed is below 40 km/h, the contact forces of nonlinear model and linear model can reflects the lateral excitation of the finger plate. When the speed exceeds 40 km/h, only the nonlinear model can reflect the lateral excitation of finger palte, the nonlinear pantograph-catenary coupling dynamics model is more suitable to the straddle-type monorail pantograph-catenary coupling research.


2011 ◽  
Vol 327 ◽  
pp. 6-11
Author(s):  
Yu Jia Tie ◽  
Wei Yang ◽  
Hao Yu Tan

Precise dynamic model of spacecraft is essential for the space missions, to be completed successfully. Nevertheless, the independent orbit or attitude dynamic models can not meet high precision tasks. This paper developed a 6-DOF relative coupling dynamic model based upon the nonlinear relative motion dynamics equations and attitude kinematics equations described by MRP. Nonlinear synchronization control law was designed for the coupled nonlinear dynamic model, whose close-loop system was proved to be global asymptotic stable by Lyapunov direct method. Finallly, the simulation results illustrate that the nonlinear adaptive synchronization control algorithm can robustly drive the orbit and attitude errors to converge to zero.


Author(s):  
Chao Dong ◽  
Kai Cheng ◽  
WenQiang Hu ◽  
Yu Yao

The steering performance is one of the major concerns in special engineering vehicle fields. This study aims to investigate the steering performance of an articulated tracked vehicle. An improved dynamic steering model for an articulated tracked vehicle is proposed when considering the shear stress–shear displacement relation of the soil at the track–ground interface. In this model, the mechanical, kinematic and dynamic models of the articulated unit are constructed to evaluate the movement performance of the articulated unit, and the kinematic and dynamic models of the front vehicle and the rear vehicle are developed to evaluate the steering performance. The created dynamic model is then applied to analyse the steering performance of a specific articulated tracked vehicle. A mechanically controlled united simulation model and actual tests of an articulated tracked vehicle are utilized to verify the established steering model. The results of the comparisons show the effectiveness of the proposed dynamic steering model.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1522
Author(s):  
Fuli Zhang ◽  
Zhaohui Yuan

The flexible manipulato is widely used in the aerospace industry and various other special fields. Control accuracy is affected by the flexibility, joint friction, and terminal load. Therefore, this paper establishes a robot dynamics model under the coupling effect of flexibility, friction, and terminal load, and analyzes and studies its control. First of all, taking the structure of the central rigid body, the flexible beam, and load as the research object, the dynamic model of a flexible manipulator with terminal load is established by using the hypothesis mode and the Lagrange method. Based on the balance principle of the force and moment, the friction under the influence of flexibility and load is recalculated, and the dynamic model of the manipulator is further improved. Secondly, the coupled dynamic system is decomposed and the controller is designed by the multivariable feedback controller. Finally, using MATLAB as the simulation platform, the feasibility of dynamic simulation is verified through simulation comparison. The results show that the vibration amplitude can be reduced with the increase of friction coefficient. As the load increases, the vibration can increase further. The trajectory tracking and vibration suppression of the manipulator are effective under the control method of multi-feedback moment calculation. The research is of great significance to the control of flexible robots under the influence of multiple factors.


2021 ◽  
Vol 162 ◽  
pp. 104347
Author(s):  
Lewei Tang ◽  
Marc Gouttefarde ◽  
Haining Sun ◽  
Lairong Yin ◽  
Changjiang Zhou

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zafer Bingul ◽  
Oguzhan Karahan

Purpose The purpose of this paper is to address a fractional order fuzzy PID (FOFPID) control approach for solving the problem of enhancing high precision tracking performance and robustness against to different reference trajectories of a 6-DOF Stewart Platform (SP) in joint space. Design/methodology/approach For the optimal design of the proposed control approach, tuning of the controller parameters including membership functions and input-output scaling factors along with the fractional order rate of error and fractional order integral of control signal is tuned with off-line by using particle swarm optimization (PSO) algorithm. For achieving this off-line optimization in the simulation environment, very accurate dynamic model of SP which has more complicated dynamical characteristics is required. Therefore, the coupling dynamic model of multi-rigid-body system is developed by Lagrange-Euler approach. For completeness, the mathematical model of the actuators is established and integrated with the dynamic model of SP mechanical system to state electromechanical coupling dynamic model. To study the validness of the proposed FOFPID controller, using this accurate dynamic model of the SP, other published control approaches such as the PID control, FOPID control and fuzzy PID control are also optimized with PSO in simulation environment. To compare trajectory tracking performance and effectiveness of the tuned controllers, the real time validation trajectory tracking experiments are conducted using the experimental setup of the SP by applying the optimum parameters of the controllers. The credibility of the results obtained with the controllers tuned in simulation environment is examined using statistical analysis. Findings The experimental results clearly demonstrate that the proposed optimal FOFPID controller can improve the control performance and reduce reference trajectory tracking errors of the SP. Also, the proposed PSO optimized FOFPID control strategy outperforms other control schemes in terms of the different difficulty levels of the given trajectories. Originality/value To the best of the authors’ knowledge, such a motion controller incorporating the fractional order approach to the fuzzy is first time applied in trajectory tracking control of SP.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wei Jiang ◽  
Yating Shi ◽  
Dehua Zou ◽  
Hongwei Zhang ◽  
Hong Jun Li

Purpose The purpose of this paper is to achieve the optimal system design of a four-wheel mobile robot on transmission line maintenance, as the authors know transmission line mobile robot is a kind of special robot which runs on high-voltage cable to replace or assist manual power maintenance operation. In the process of live working, the manipulator, working end effector and the working environment are located in the narrow space and with heterogeneous shapes, the robot collision-free obstacle avoidance movement is the premise to complete the operation task. In the simultaneous operation, the mechanical properties between the manipulator effector and the operation object are the key to improve the operation reliability. These put forward higher requirements for the mechanical configuration and dynamic characteristics of the robot, and this is the purpose of the manuscript. Design/methodology/approach Based on the above, aiming at the task of tightening the tension clamp for the four-split transmission lines, the paper proposed a four-wheel mobile robot mechanism configuration and its terminal tool which can adapt to the walking and operation on multi-split transmission lines. In the study, the dynamic models of the rigid robot and flexible transmission line are established, respectively, and the dynamic model of rigid-flexible coupling system is established on this basis, the working space and dynamic characteristics of the robot have been simulated in ADAMS and MATLAB. Findings The research results show that the mechanical configuration of this robot can complete the tightening operation of the four-split tension clamp bolts and the motion of robot each joint meets the requirements of driving torque in the operation process, which avoids the operation failure of the robot system caused by the insufficient or excessive driving force of the robot joint torque. Originality/value Finally, the engineering practicability of the mechanical configuration and dynamic model proposed in the paper has been verified by the physical prototype. The originality value of the research is that it has double important theoretical significance and practical application value for the optimization of mechanical structure parameters and electrical control parameters of transmission line mobile robots.


Sign in / Sign up

Export Citation Format

Share Document