An experimental study on surface roughness and frictional property of ultrasonic-vibration-assisted milled surface

Author(s):  
Girish C Verma ◽  
Pulak M Pandey ◽  
Uday S Dixit

Ultrasonic-vibration-assisted milling is a variant of conventional milling process. In this study, experimental investigations were carried out to evaluate the effect of process parameters on the average surface roughness of machined surface (of Al6063 alloy). The results were evaluated to understand the effect of process parameters and are explained using the physics of the process. The effect of ultrasonic amplitude on frictional and wettability property of machined bottom surface was also evaluated. With the increase in power of ultrasonic vibration, the surface roughness increased; however, the friction of lubricated machined surface decreased while sliding on a mild steel surface. With the increase in ultrasonic power, the wettability of the surface increased resulting in a better lubrication and consequent reduction of friction.

2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Ping Zou ◽  
Yingshuai Xu ◽  
Yu He ◽  
Mingfang Chen ◽  
Hao Wu

This research study focuses on the experimental analysis of the three-dimensional (3D) surface topography and surface roughness of the workpiece machined with ultrasonic vibration assisted turning (UAT) in comparison to conventional turning (CT). For the challenge that machining difficulties of 304 austenitic stainless steel (ASS 304) and high demands for the machined surface quality and machining precision represent, starting with cutting principle and processing technology, the ultrasonic vibration method is employed to scheme out a machining system of ultrasonic vibration assisted turning (MS-UAT). The experiments for turning the workpiece of ASS 304 are conducted with and without ultrasonic vibration using the designed MS-UAT, and then the 3D morphology evaluation parametersSaandSqare applied to characterize and analyse the machined surface. The experimental results obtained demonstrate that the process parameters in UAT of ASS 304 have obvious effect on the 3D surface topography and surface roughness of machined workpiece, and the appropriate choice of various process parameters, including ultrasonic amplitude, feed rate, depth of cut, and cutting speed, can enhance the machined surface quality efficiently to make the machining effect of UAT much better than that of CT.


2013 ◽  
Vol 589-590 ◽  
pp. 227-231 ◽  
Author(s):  
Lai Zou ◽  
Guo Jun Dong ◽  
Ming Zhou

This paper performed a series of experimental investigations for typical die steels with ultrasonic vibration assisted turning. The micro-morphology of rake face and flank face of diamond was detected by scanning electron microscopy, and the roughness of machined surface was measured by Form Talysurf. In order to clarify the influence laws of cutting parameters and tool geometric parameters on tool wear and surface quality. The results revealed that the wear of diamond and surface roughness rely heavily on the feed rate, and have less relativity with the relief angle and the depth of cut to an extent. In addition, the function mechanism of ultrasonic vibration turning had been analyzed, it exhibited that this technological measure has enhanced tool life and improved surface quality to a large extent.


2019 ◽  
Vol 27 (03) ◽  
pp. 1950112 ◽  
Author(s):  
A. SHANMUGAM ◽  
K. KRISHNAMURTHY ◽  
T. MOHANRAJ

Surface roughness and taper angle of an abrasive waterjet machined surface of 7075 Aluminum metal matrix composite were deliberately studied. Response surface methodology design of experiments and analysis of variance were used to design the experiments and to identify the effect of process parameters on surface roughness and taper angle. The jet traverse speed and jet pressure were the most significant process parameters which influence the surface roughness and taper angle, respectively. Increasing the pressure and jet traverse speed results in increasing the surface roughness and taper angle. At the same time, decreasing the standoff distance and jet traverse speed possibly enhances both the responses. The optimal process parameters of 1[Formula: see text]mm as standoff distance, 192[Formula: see text]MPa as water pressure and 30[Formula: see text]mm[Formula: see text]min[Formula: see text] as jet traverse speed were identified to obtain the minimum value of surface roughness and taper angle. Based on the optimal parameters, the confirmation test was conducted. The mathematical equation was obtained from the experimental data using regression analysis; it was observed that the error was less than 5% of the experimentally measured values.


2020 ◽  
Vol 10 (2) ◽  
pp. 516 ◽  
Author(s):  
Pei Yi Zhao ◽  
Ming Zhou ◽  
Xian Li Liu ◽  
Bin Jiang

Because of the changes in cutting conditions and ultrasonic vibration status, the proportion of multiple material removal modes are of uncertainty and complexity in ultrasonic vibration-assisted grinding of optical glass. Knowledge of the effect of machined surface composition is the basis for better understanding the influence mechanisms of surface roughness, and also is the key to control the surface composition and surface quality. In the present work, 32 sets of experiments of ultrasonic vibration-assisted grinding of BK7 optical glass were carried out, the machined surface morphologies were observed, and the influence law of machining parameters on the proportion of different material removal was investigated. Based on the above research, the effect of surface composition was briefly summarized. The results indicated that the increasing of spindle rotation speed, the decreasing of feed rate and grinding depth can improve the proportion of ductile removal. The introduction of ultrasonic vibration can highly restrain the powdering removal, and increase the proportion of ductile removal. Grinding depth has a dominant positive effect on the surface roughness, whereas the spindle rotation speed and ultrasonic amplitude both have negative effect, which was caused by the reduction of brittle fracture removal.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Jian Zhao ◽  
Zhanqiang Liu ◽  
Bing Wang ◽  
Yukui Cai ◽  
Qinghua Song

Abstract Ultrasonic burnishing is usually applied to make machined surface modification. The acoustic softening effect caused by ultrasonic vibration is beneficial to the machining of difficult-to-cut materials. In the present work, a burnishing force prediction model was proposed for rotary ultrasonic burnishing of titanium alloy Ti–6Al–4V, whose surface had been machined with the face milling process. Firstly, the contact between the burnishing roller and one single milling mark was analyzed with plane strain assumption based on the Boussinesq–Flamant contact problem. Then, the effect of ultrasonic softening on the yield stress of Ti–6Al–4V was investigated. The critical contact width and contact load that the burnishing roller crushed on one single milling mark were examined to confirm the feasibility of the proposed ultrasonic burnishing force prediction model. The experimental verifications were carried out at various ultrasonic powers. The burnishing forces from experiment measurements were consistent with the calculated results from the proposed model. The mean deviations between theoretical and experimental results of the ultrasonic burnishing force were 10.4%, 12.2%, and 15.2%, corresponding to the ultrasonic power at the level of 41 W, 158 W, and 354 W, respectively.


2020 ◽  
Vol 846 ◽  
pp. 122-127
Author(s):  
Gandjar Kiswanto ◽  
Yolanda Rudy Johan ◽  
Poly ◽  
Tae Jo Ko

Micro products or micro components are commonly used in today’s world. Research around micromanufacture technologies to produce a better product quality has been going on extensively. Ultrasonic vibration assisted micromilling (UVAM) is one of the technologies that can give a better machining qualities over the conventional ones. One of the benefits UVAM can give is reducing the machined surface roughness. The purpose of this paper is to give an idea how vibration assisted micromilling can give a better surface roughness quality. The theoritical surface roughness geometry model is made using MATLAB software. The cutting tool used in the simulation is end mill. There is a feature of the cutting tool called bottom cutting edge angle. This feature will be considered on this paper. The effects of the bottom cutting edge on workpiece machined surface can be looked visually from the simulation. Thus, the effects of cutting process using UVAM on the workpiece surface can be looked as well through the simulation.


2013 ◽  
Vol 325-326 ◽  
pp. 1357-1361 ◽  
Author(s):  
Yan Hua Huang ◽  
Dong Xi Lv ◽  
Yong Jian Tang ◽  
Hong Xiang Wang ◽  
Hai Jun Zhang

Experiments were carried out to study the effect of ultrasonic vibration on the surface roughness and subsurface damage (SSD) in rotary ultrasonic machining (RUM) of glass BK7. As a comparison, some conventional grinding (CG) experiments were also performed under the same process parameters with there of the RUM ones. The surface roughness of the RUM/CG samples was measured with a surface profilometer. The SSD of these specimens was assessed and characterized by a measuring microscope with the help of the taper polishing method. Also, the influence of process parameters (cutting depth, feed speed, and spindle speed) on the surface/subsurface quality was discussed. As a result, both the surface roughness and the SSD depth of the RUM/CG specimens were reduced with the increased spindle speed, while increased with the increasing of feed speed and cutting depth of the diamond tool. Compared with the CG process, the introduction of ultrasonic vibration resulted in the higher surface roughness and SSD depth, due to the fact that the max cutting depth of the abrasive in the RUM process increased by an amplitude compared with that in the CG process.


2008 ◽  
Vol 53-54 ◽  
pp. 243-247 ◽  
Author(s):  
Bo Zhao ◽  
Ming Li Zhao ◽  
Guo Fu Gao

The influence of ultrasonic vibration on the surface roughness and micro-topography of ceramics plate is discussed in this paper. Grinding assisted by two-dimensional ultrasonic vibration is developed to deal with the processing difficulty of ceramic materials due to its hard-brittle property. The experimental results show that the surface roughness value obtained in two-dimensional ultrasonic grinding nano-ZrO2 ceramic plate specimen is obviously smaller than that in common grinding, and the scratched grooves on the machined surface in ultrasonic grinding is wider and relatively smoother than that in common grinding. Consequently, it proves that the two-dimensional ultrasonic machining is a feasible, high-efficient machining method for hard-brittle materials.


Sign in / Sign up

Export Citation Format

Share Document