Microstructure and mechanical properties of specimens produced using the wire-arc additive manufacturing process

Author(s):  
A Astarita ◽  
G Campatelli ◽  
P Corigliano ◽  
G Epasto ◽  
F Montevecchi ◽  
...  

The additive manufacturing technique is becoming popular and promising in recent years. Some steel ER70S-6 specimens were produced by wire arc additive manufacturing. Before the tensile tests, 3D X-ray computed tomography was applied to detect the presence of internal defects due to the production process. Static tensile tests were performed in order to analyze the influence of the different directions (deposition and layer stacking directions) on the mechanical properties. The digital image correlation technique was applied during the tests for detecting the displacement and strain fields, while infrared thermography was applied for detecting the temperature field of the specimen surface. After the mechanical tests, scanning electron microscopy was employed to analyze the fracture surfaces of the specimens. The results showed the presence of small defects that did not affect the mechanical properties of the specimens and no significant anisotropy was detected in the two directions (deposition and layer stacking directions).

2017 ◽  
Vol 48 (1) ◽  
pp. 3-24 ◽  
Author(s):  
Mehdi Ghazimoradi ◽  
Valter Carvelli ◽  
Maria Chiara Marchesi ◽  
Roberto Frassine

In this paper, the mechanical properties of different tetraxial fabrics are investigated. Fabrics were produced using an innovative loom capable of weaving four threads at the same time with complete discretion of yarn type and count. The experimental investigation deals with in-plane and out-of-plane mechanical testing of tetraxial fabrics, as well as yarns made of four different materials (polyethylene terephthalate, glass, aramid, and basalt). The digital image correlation technique was used to measure the in-plane strain field for both uniaxial and biaxial tensile tests. The extensive experimental campaign allowed for a complete mechanical characterization of this novel fabric architecture including interlacement of different yarns.


Author(s):  
M. Mrówka ◽  
M. Szymiczek ◽  
J. Lenża

Purpose: Thermoplastic polyurethanes (TPU) found application in mining. Due to the excellent processing properties, thermoplastic polyurethanes can be also use to make elements that would facilitate miner's work. These elements, however, differ in dimensions depending on the person who is going to use them, that is why they should be personalized. In case of all the above studies, the elements or stuffs were made by means of the injection method. This method limits the possibility of producing mining’s stuff only to models that have a mould. The 3D printing technology developing rapidly throughout the recent years allows for high-precision, personalized elements’ printing, made of thermoplastic materials. Design/methodology/approach: The samples from thermoplastic polyurethanes were made using 3D printing and then subjected to the aging process at intervals of 2, 7 and 30 days. The samples were then subjected to a static tensile tests, hardness tests and FT-IR spectroscopy. Findings: The obtained results of mechanical tests and IR analyses show that the aging process in mine water does not affect the mechanical properties of the samples regardless of the aging time. IR spectral analysis showed no changes in the structure of the main and side polyurethane chains. Both mechanical and spectral tests prove that polyurethanes processed using 3D printing technology can be widely used in mining. Research limitations/implications: Only one type of TPU was processed in this work. Further work should show that synthetic mine water does not degrade the mechanical properties of other commercially available TPUs. Practical implications: The additive technology allows getting elements of mining clothing, ortheses, insoles or exoskeleton elements adapted to one miner. Originality/value: The conducted tests allowed to determine no deterioration of the mechanical properties of samples aged in synthetic mine water. TPU processing using 3D printing technology can be used in mining.


2019 ◽  
Vol 9 (4) ◽  
pp. 787 ◽  
Author(s):  
Benjamin Shassere ◽  
Andrzej Nycz ◽  
Mark Noakes ◽  
Christopher Masuo ◽  
Niyanth Sridharan

Metal Big Area Additive Manufacturing (MBAAM) is a novel wire-arc additive manufacturing method that uses a correction-based approach developed at the Oak Ridge National Laboratory (ORNL). This approach is an integrated software method that minimizes the dynamic nature of welding and compensates for build height. The MBAAM process is used to fabricate simple geometry thin walled specimens, using a C-Mn steel weld wire, to investigate the scatter in mechanical properties and correlate them to the underlying microstructure. The uni-axial tensile tests show isotropic tensile and yield properties with respect to building directions, although some scatter in elongation is observed. Large scatter is observed in the Charpy Impact tests. The microstructure characterization reveals mostly homogenous ferrite grains with some pearlite, except for some changes in morphology and grain size at the interface between the build and the base plate. The measured properties and microstructure are compared with the toughness and strength values reported in the literature, and a hypothesis is developed to rationalize the differences. Overall, the MBAAM process creates stable, isotropic, and weld-like mechanical properties in the deposit, while achieving a precise geometry obtained through a real-time feedback sensing, closed loop control system.


2014 ◽  
Vol 635 ◽  
pp. 139-142 ◽  
Author(s):  
Lucia Fedorová ◽  
Irenej Poláček ◽  
Radovan Hudák ◽  
Mária Mihaliková ◽  
Jozef Živčák

Spinal implants are mechanical equipments that facilitate fusion, correct deformities, and stabilize and strengthen the spine. To make an implant efficient, it has to endure without any failure, especially mechanical damage, stand all the static and dynamic loads incurred in spine during everyday activities, and maintain the necessary position of motive segments during the bone adhesion. [1] Human spine is exposed to the highest load in the lumbar section [2]; therefore, lumbar bilateral implants require higher attention in terms of mechanical parameters verification. The main objective of this paper was to compare mechanical properties of lumbar bilateral systems using the spinal implants manufactured by the conventional method and the Direct Metal Laser Sintering method (DMLS). Detection of mechanical properties enables the assessment of possible replacement of commercial manufacture with the DMLS manufacture. On the basis of the ASTM F1717 standards providing the essentials for the comparison of mechanical properties of spinal systems, twenty mechanical compression tests were carried out. Mechanical tests were carried out using 20 spinal bars with the diameter of 11 mm and the fastening length of 260 mm, manufactured by the DMLS technology while using the EOSINT M280 equipment (EOS, Germany), and 20 identical spinal bars manufactured by the conventional technology. Results obtained in mechanical compression tests indicate that both manufacture methods are comparable and there are no significant differences between them, as for the strength characteristics. Other trials will be focused on static tensile tests and cyclical tests of lumbar bilateral systems.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 689
Author(s):  
Trunal Bhujangrao ◽  
Fernando Veiga ◽  
Alfredo Suárez ◽  
Edurne Iriondo ◽  
Franck Girot Mata

Wire Arc Additive Manufacturing (WAAM) is one of the most appropriate additive manufacturing techniques for producing large-scale metal components with a high deposition rate and low cost. Recently, the manufacture of nickel-based alloy (IN718) using WAAM technology has received increased attention due to its wide application in industry. However, insufficient information is available on the mechanical properties of WAAM IN718 alloy, for example in high-temperature testing. In this paper, the mechanical properties of IN718 specimens manufactured by the WAAM technique have been investigated by tensile tests and hardness measurements. The specific comparison is also made with the wrought IN718 alloy, while the microstructure was assessed by scanning electron microscopy and X-ray diffraction analysis. Fractographic studies were carried out on the specimens to understand the fracture behavior. It was shown that the yield strength and hardness of WAAM IN718 alloy is higher than that of the wrought alloy IN718, while the ultimate tensile strength of the WAAM alloys is difficult to assess at lower temperatures. The microstructure analysis shows the presence of precipitates (laves phase) in WAAM IN718 alloy. Finally, the effect of precipitation on the mechanical properties of the WAAM IN718 alloy was discussed in detail.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1094
Author(s):  
M. A. Lakhdari ◽  
F. Krajcarz ◽  
J. D. Mithieux ◽  
H. P. Van Landeghem ◽  
M. Veron

The impact of microstructure evolution on mechanical properties in superduplex stainless steel UNS S32750 (EN 1.4410) was investigated. To this end, different thermomechanical treatments were carried out in order to obtain clearly distinct duplex microstructures. Optical microscopy and scanning electron microscopy, together with texture measurements, were used to characterize the morphology and the preferred orientations of ferrite and austenite in all microstructures. Additionally, the mechanical properties were assessed by tensile tests with digital image correlation. Phase morphology was not found to significantly affect the mechanical properties and neither were phase volume fractions within 13% of the 50/50 ratio. Austenite texture was the same combined Goss/Brass texture regardless of thermomechanical processing, while ferrite texture was mainly described by α-fiber orientations. Ferrite texture and average phase spacing were found to have a notable effect on mechanical properties. One of the original microstructures of superduplex stainless steel obtained here shows a strength improvement by the order of 120 MPa over the industrial material.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 513
Author(s):  
Jae Won Kim ◽  
Jae-Deuk Kim ◽  
Jooyoung Cheon ◽  
Changwook Ji

This study observed the effect of filler metal type on mechanical properties of NAB (NiAl-bronze) material fabricated using wire arc additive manufacturing (WAAM) technology. The selection of filler metal type is must consider the field condition, mechanical properties required by customers, and economics. This study analyzed the bead shape for representative two kind of filler metal types use to maintenance and fabricated a two-dimensional bulk NAB material. The cold metal transfer (CMT) mode of gas metal arc welding (GMAW) was used. For a comparison of mechanical properties, the study obtained three specimens per welding direction from the fabricated bulk NAB material. In the tensile test, the NAB material deposited using filler metal wire A showed higher tensile strength and lower elongation (approx. +71 MPa yield strength, +107.1 MPa ultimate tensile strength, −12.4% elongation) than that deposited with filler metal wire B. The reason is that, a mixture of tangled fine α platelets and dense lamellar eutectoid α + κIII structure with β´ phases was observed in the wall made with filler metal wire A. On the other hand, the wall made with filler metal wire B was dominated by coarse α phases and lamellar eutectoid α + κIII structure in between.


Sign in / Sign up

Export Citation Format

Share Document