A Comparison of Mechanical Properties of Lumbar Bilateral Implants Manufactured by Additive and Conventional Technologies

2014 ◽  
Vol 635 ◽  
pp. 139-142 ◽  
Author(s):  
Lucia Fedorová ◽  
Irenej Poláček ◽  
Radovan Hudák ◽  
Mária Mihaliková ◽  
Jozef Živčák

Spinal implants are mechanical equipments that facilitate fusion, correct deformities, and stabilize and strengthen the spine. To make an implant efficient, it has to endure without any failure, especially mechanical damage, stand all the static and dynamic loads incurred in spine during everyday activities, and maintain the necessary position of motive segments during the bone adhesion. [1] Human spine is exposed to the highest load in the lumbar section [2]; therefore, lumbar bilateral implants require higher attention in terms of mechanical parameters verification. The main objective of this paper was to compare mechanical properties of lumbar bilateral systems using the spinal implants manufactured by the conventional method and the Direct Metal Laser Sintering method (DMLS). Detection of mechanical properties enables the assessment of possible replacement of commercial manufacture with the DMLS manufacture. On the basis of the ASTM F1717 standards providing the essentials for the comparison of mechanical properties of spinal systems, twenty mechanical compression tests were carried out. Mechanical tests were carried out using 20 spinal bars with the diameter of 11 mm and the fastening length of 260 mm, manufactured by the DMLS technology while using the EOSINT M280 equipment (EOS, Germany), and 20 identical spinal bars manufactured by the conventional technology. Results obtained in mechanical compression tests indicate that both manufacture methods are comparable and there are no significant differences between them, as for the strength characteristics. Other trials will be focused on static tensile tests and cyclical tests of lumbar bilateral systems.

Author(s):  
M. Mrówka ◽  
M. Szymiczek ◽  
J. Lenża

Purpose: Thermoplastic polyurethanes (TPU) found application in mining. Due to the excellent processing properties, thermoplastic polyurethanes can be also use to make elements that would facilitate miner's work. These elements, however, differ in dimensions depending on the person who is going to use them, that is why they should be personalized. In case of all the above studies, the elements or stuffs were made by means of the injection method. This method limits the possibility of producing mining’s stuff only to models that have a mould. The 3D printing technology developing rapidly throughout the recent years allows for high-precision, personalized elements’ printing, made of thermoplastic materials. Design/methodology/approach: The samples from thermoplastic polyurethanes were made using 3D printing and then subjected to the aging process at intervals of 2, 7 and 30 days. The samples were then subjected to a static tensile tests, hardness tests and FT-IR spectroscopy. Findings: The obtained results of mechanical tests and IR analyses show that the aging process in mine water does not affect the mechanical properties of the samples regardless of the aging time. IR spectral analysis showed no changes in the structure of the main and side polyurethane chains. Both mechanical and spectral tests prove that polyurethanes processed using 3D printing technology can be widely used in mining. Research limitations/implications: Only one type of TPU was processed in this work. Further work should show that synthetic mine water does not degrade the mechanical properties of other commercially available TPUs. Practical implications: The additive technology allows getting elements of mining clothing, ortheses, insoles or exoskeleton elements adapted to one miner. Originality/value: The conducted tests allowed to determine no deterioration of the mechanical properties of samples aged in synthetic mine water. TPU processing using 3D printing technology can be used in mining.


Author(s):  
A Astarita ◽  
G Campatelli ◽  
P Corigliano ◽  
G Epasto ◽  
F Montevecchi ◽  
...  

The additive manufacturing technique is becoming popular and promising in recent years. Some steel ER70S-6 specimens were produced by wire arc additive manufacturing. Before the tensile tests, 3D X-ray computed tomography was applied to detect the presence of internal defects due to the production process. Static tensile tests were performed in order to analyze the influence of the different directions (deposition and layer stacking directions) on the mechanical properties. The digital image correlation technique was applied during the tests for detecting the displacement and strain fields, while infrared thermography was applied for detecting the temperature field of the specimen surface. After the mechanical tests, scanning electron microscopy was employed to analyze the fracture surfaces of the specimens. The results showed the presence of small defects that did not affect the mechanical properties of the specimens and no significant anisotropy was detected in the two directions (deposition and layer stacking directions).


2015 ◽  
Vol 52 (2) ◽  
pp. 211-223 ◽  
Author(s):  
Paolo Tommasi ◽  
Luca Verrucci ◽  
Tatiana Rotonda

The geotechnical behaviour of very weak pyroclastic rocks controls both the failure mechanisms at the margins of rock mesas, where historic hill towns are often sited, as well as the stability of old underground cavities in urban areas of Central Italy. The study focuses on the mechanical behaviour of one of the pyroclastic materials forming the Orvieto mesa (pozzolana), not unlike other pozzolanas in Central and Southern Italy and other pyroclastites from volcanic districts worldwide. The mechanical properties under static conditions of this weakly cemented rock are reported. A petrographic and physical characterization of the material was preliminary conducted, followed by a wide range of mechanical tests: oedometer, uniaxial, and isotropic compression tests and indirect tensile tests. The stress–strain and strength behaviours of the pozzolana are highlighted and compared with those of the rock materials of the pyroclastic formation (tuff). The mechanical behaviour of the pozzolana is related to its physical and textural characters, with special reference to continuity of the groundmass and porosity. Finally, the role of the material behaviour at the field scale is discussed.


1999 ◽  
Author(s):  
Takeru Ohki ◽  
Shinya Ikegaki ◽  
Ken Kurasiki ◽  
Hiroyuki Hamada ◽  
Masaharu Iwamoto

Abstract In this study, fracture behavior and strength in the flat braided bar with a circular hole were investigated by static and fatigue test. Two type of specimens were prepared. They are a braided flat bar with an integrally-formed braided hole and a braided flat bar with a machined hole. Moreover, we also examined a specimen that had a metal pin inserted at the circular hole. This specimen was subjected to a static tensile test. The results of the tensile tests indicate that the strength of the flat bar with a braided hole was larger than that of the one with the machined hole. Furthermore, from the results of the fatigue tests, the flat bar with the braided hole showed higher fatigue property than that of the one with the machined hole.


2000 ◽  
Vol 122 (4) ◽  
pp. 420-424 ◽  
Author(s):  
Takeru Ohki ◽  
Shinya Ikegaki ◽  
Ken Kurasiki ◽  
Hiroyuki Hamada ◽  
Masaharu Iwamoto

In this study, fracture behavior and strength in the flat braided bar with a circular hole were investigated by static and fatigue test. Two types of specimen were prepared. They are a braided flat bar with an integrally formed braided hole and a braided flat bar with a machined hole. Moreover, we also examined a specimen that had a metal pin inserted at the circular hole. This specimen was subjected to a static tensile test. The results of the tensile tests indicate that the strength of the flat bar with a braided hole was larger than that of the one with the machined hole. Furthermore, from the results of the fatigue tests, the flat bar with the braided hole showed higher fatigue property than that of the one with the machined hole. [S0094-4289(00)02604-9]


2010 ◽  
Vol 70 ◽  
pp. 37-46 ◽  
Author(s):  
Thierry Cutard ◽  
Nicolas Donval ◽  
Aurélien Mazzoni ◽  
Claire Michel ◽  
Fabien Nazaret

This paper deals with the characterization of the thermomechanical behavior of monolithic refractory castables in a wide temperature range, up to 1200°C. Different test types are considered: tensile tests, compression tests, bending tests and tests on more complex shapes and geometries. A particular attention is paid to the detailed characterization and interpretation of the non-linear behaviors of these materials. Monotonic, cyclic and creep tests are considered. In some cases, digital image correlation (DIC) methods can be coupled to mechanical tests to obtain strain fields. Such results are particularly interesting to observe and to understand damage processes. As damage is a major characteristic of the monolithic castable behaviors, links are established between the thermomechanical behavior and damage mechanisms. Two main scales are taken into account for damage characterization: the macroscopic and the microscopic ones. Main mechanisms that are considered deal with microcracking, macrocracking, debonding and cavitation. Two types of materials are considered: non-reinforced and fiber reinforced refractory castables.


2014 ◽  
Vol 59 (4) ◽  
pp. 1637-1640 ◽  
Author(s):  
J. Dworecka ◽  
E. Jezierska ◽  
K. Rozniatowski ◽  
W. Swiatnicki

Abstract The aim of the work was to produce a nanobainitic structure in the commercial bearing steel - 100CrMnSi6-4 and to characterize its structure and mechanical properties. In order to produce this structure the austempering heat treatment was performed, with parameters that have been selected on the basis of dilatometric measurements of phase transformation kinetics in steel. The heat treatment process was performed in laboratory as well as in industrial furnaces. The obtained structure was characterized using transmission electron microscopy. In order to investigate the effect of the microstructure parameters on the material’s mechanical properties, the hardness, impact strength and static tensile tests have been conducted.


Author(s):  
Ezequiel C. P. Pessoa ◽  
Alexandre Q. Bracarense ◽  
Stephen Liu ◽  
Faustino Peres Guerrero ◽  
Eduardo M. Zica

The objective of this work was to evaluate the porosity variation along weld bead and its relation with weld metal mechanical properties and electrode heating during underwater wet welding. Three commercial covered electrodes were used to make bead-on-plate welds. V-groove welds were also made using two electrodes at 50 and 100 meters depth in three different steels. Electrode temperature and weld metal porosity measurements and mechanical tests were performed. The results of temperature measurements indicated that electrode temperature increases during underwater wet welding. Simultaneously, porosity reduces along the BOP and V-groove weld beads. Mechanical tests showed that the mechanical properties are better at the end of welds. Additionally, the load supported by side bend tests samples extracted from 50 meter welds were higher than that measured for the 100 meter welds. Tensile test results also showed similar trend. Charpy test did not reveal any relation between the absorbed energy and porosity reduction along weld bead. However presented the same trend of bend and tensile tests at 50 and 100 m depth.


2019 ◽  
Vol 2019 (4) ◽  
pp. 55-65
Author(s):  
Anna Bona

Abstract This article has a theoretical and experimental character. It presents the characteristics of two main thermoplastics used in the aerospace industry – poly ether ether ketone (PEEK) and poly phenylene sulphide (PPS). The selected materials are compounds for the production of thermoplastic polymer matrix composites. The paper presents a literature review of the application of thermoplastic polymer matrix composite materials in aviation. Additionally, the paper focuses on the characteristics of carbon fibre-reinforced polymer (CFRP) which plays an important role in the production of aerospace components. Testing methods have been chosen on the basis of the type of composite matrix. The article contains the most important mechanical properties and general characteristics of thermoplastics used as a matrix for CFRP type composites used in the aerospace industry. Individual test procedures which allow for the evaluation of mechanical properties of composite materials on a thermoplastic polymer matrix, have been described. Mechanical tests such as static tensile test and bending of short beams were carried out in order to examine CFRP composites.


2020 ◽  
Vol 834 ◽  
pp. 57-66
Author(s):  
Mihaela Raluca Condruz ◽  
Alexandru Paraschiv ◽  
Andreea Deutschlander ◽  
Ionel Mîndru

Mechanical properties of several composite materials were assessed in order to establish their suitability for unmanned aerial vehicle components manufacturing. The materials under evaluation consisted in E-glass fiber (satin/twill weave) impregnated with polyester, respective epoxy resin. The study was focused on two mechanical tests: low-velocity impact and tensile tests. Based on the results obtained, it was observed that configurations reinforced with twill weave presented higher tensile strength compared with satin reinforced configurations. Moreover, they presented a lower damage degree in case of impact tests. It was concluded that fabric quality has a considerable influence on the impregnation process and on the composite material mechanical properties. In the present case, the twill weave impregnated with epoxy resin can be used to manufacture small range UAV components.


Sign in / Sign up

Export Citation Format

Share Document