Dynamic effects on spur gear pairs power loss lubricated with axle gear oils
The dynamic model of 12-degrees-of-freedom for spur gears pair accounting for nonlinear time-varying stiffness, damping, and coefficient of friction along the path of contact obtained from experimental tests is investigated. The Newmark's integration method is used to solve the equations and obtain the dynamic responses. Elementary mass, stiffness, and damping matrices with torsional and translational coupled effects were detailed. The lens of this work is to start from a nonlinear dynamic model to evaluate the influence of dynamic effects and lubrication on meshing gears power loss for different spur gear geometries within various operating conditions. The results reveal some useful references to vibration control, dynamic design, and efficiency improvement.