Dynamic effects on spur gear pairs power loss lubricated with axle gear oils

Author(s):  
Maroua Hammami ◽  
Nabih Feki ◽  
Olfa Ksentini ◽  
Taissir Hentati ◽  
Mohamed Slim Abbes ◽  
...  

The dynamic model of 12-degrees-of-freedom for spur gears pair accounting for nonlinear time-varying stiffness, damping, and coefficient of friction along the path of contact obtained from experimental tests is investigated. The Newmark's integration method is used to solve the equations and obtain the dynamic responses. Elementary mass, stiffness, and damping matrices with torsional and translational coupled effects were detailed. The lens of this work is to start from a nonlinear dynamic model to evaluate the influence of dynamic effects and lubrication on meshing gears power loss for different spur gear geometries within various operating conditions. The results reveal some useful references to vibration control, dynamic design, and efficiency improvement.


Author(s):  
Nabih Feki ◽  
Maroua Hammami ◽  
Olfa Ksentini ◽  
Mohamed Slim Abbes ◽  
Mohamed Haddar

In this work, a nonlinear dynamic model of an FZG-A10 spur gear was investigated by taking into account for the actual time-varying gear mesh stiffness and the frictional effects between meshing gear teeth to evaluate the influence of the dynamic effects on frictional gear power loss predictions. The equations of motion of the generalized translational-torsional coupled dynamic system derived from Lagrange principle was extended compared to authors’ previous work in order to account for time dependent coefficient of friction and profile errors. The dynamic response of spur gears, computed by an iterative implicit scheme of Newmark, is changed due to the presence of coefficient of friction and profile errors. A dynamic analysis was performed and the influence of frictional effect including tooth shape deviations, in particular, was scrutinized since a time-dependent coefficient of friction is deeply related to the gear surface roughness and all parameters dependent on gears error profiles are introduced in the proposed model. The predicted meshing gear power losses with constant and local friction coefficient were compared. The influence of constant and variable profile errors considered in the local coefficient of friction formulation was also studied and their corresponding root mean square (RMS) power loss was compared to the experimental results. The results using FZG A10 spur gear pairs running under several operating conditions (different loads and speeds) validate the superiority of the proposed model against previous similar models.



2021 ◽  
Vol 12 (1) ◽  
pp. 361-373
Author(s):  
Dawei Liu ◽  
Zhenzhen Lv ◽  
Guohao Zhao

Abstract. A noncircular face gear (NFG) conjugated with a pinion is a new type of face gear which can transmit variable velocity ratio and in which two time-varying excitations exist, namely the meshing stiffness excitation and instantaneous center excitation. Considering the tooth backlash, static transmission error and multifrequency parametric excitation, a nonlinear dynamic model of the NFG pair is presented. Based on the harmonic balance method and discrete Fourier transformation, a semi-analytic approach for the nonlinear dynamic model is given to analyze the dynamic behaviors of the NFG. Results demonstrate that, with increase in the eccentric ratio, input velocity and error amplitude, the NFG will undergo a non-rattle, unilateral rattle and bilateral rattle state in succession, and a jump phenomenon will appear in the dynamic responses when the rattle state of the gears is transformed from unilateral rattle to bilateral rattle.



2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Zhibo Geng ◽  
Ke Xiao ◽  
Junyang Li ◽  
Jiaxu Wang

Abstract In this study, a nonlinear dynamic model of a spur gear transmission system with non-uniform wear is proposed to analyze the interaction between surface wear and nonlinear dynamic characteristics. A quasi-static non-uniform wear model is presented, with consideration of the effects of operating time on mesh stiffness and gear backlash. Furthermore, a nonlinear dynamic model with six degrees-of-freedom is established considering surface friction, time-varying gear backlash, time-varying mesh stiffness, and eccentricity, and the Runge–Kutta method applied to solve this model. The bifurcation and chaos in the proposed dynamic model with the change of the operating time and the excitation frequency are investigated by bifurcation and spectrum waterfall diagrams to analyze the bifurcation characteristics and the dimensionless mesh force. It is found that surface wear is generated with a change in operating time and affects the nonlinear dynamic characteristics of the spur gear system. This study provides a better understanding of nonlinear dynamic characteristics of gear transmission systems operating under actual conditions.



2015 ◽  
Vol 137 (4) ◽  
Author(s):  
S. S. Ghosh ◽  
G. Chakraborty

The effect of rolling resistance on the power loss during gear transmission has been studied. The resistance has been modeled by a lateral shift of the line of action of the contact force. The effect of this shift on the equivalent friction force has been predicted with the help of a six degrees of freedom (DOF) model of a spur gear pair. The predicted results agree closely with the experimental data available in literature.



2002 ◽  
Vol 124 (3) ◽  
pp. 420-427 ◽  
Author(s):  
Randall T. Anderson ◽  
Perry Y. Li

A nonlinear dynamic model for an unconventional, commercially available electrohydraulic flow control servovalve is presented. The two stage valve differs from the conventional servovalve design in that: it uses a pressure control pilot stage; the boost stage uses two spools, instead of a single spool, to meter flow into and out of the valve separately; and it does not require a feedback wire and ball. Consequently, the valve is significantly less expensive. The proposed model captures the nonlinear and dynamic effects. The model has been coded in Matlab/Simulink and experimentally validated.



2011 ◽  
Vol 66-68 ◽  
pp. 1748-1754
Author(s):  
Yu Liu ◽  
Yi Lin Wu

Based on the Kirchhoff equations, Newton-Euler laws, boundary layer theory and mass definition, the six degrees of freedom dynamic model of airship complete with aerodynamic forces, wind effect is presented. Then, the nonlinear dynamic model is divided into three group equations by restricting airship motion in different planes respectively. The motion characteristics of airship, including stability, the effect of ballast position and rotational damping, are studied using linearized model. The results of simulation verify the correctness of the theoretical analysis and airship design.



2021 ◽  
Vol 1820 (1) ◽  
pp. 012038
Author(s):  
Chen Zhang ◽  
Xuew Liu ◽  
Xingl Shi ◽  
Xiaom Ling


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3899
Author(s):  
Fabiano C. Rosa ◽  
Edson Bim

Predictive controllers have been extensively studied and applied to electrical drives, mainly because they provide fast dynamic responses and are suitable for multi-variable control and non-linear systems. Many approaches perform the prediction and optimization process on-line, which requires a high computational capacity for fast dynamics, such as, for example, the control of AC electric motors. Due to the complexity of embedding constraints in controller design, which demands a high computational capacity to solve the optimization problem, off-line approaches are one of the choices to overcome this problem. However, these strategies do not deal with the inherent constraints of the drive system, which significantly simplifies the design of the controller. This paper proposes a non-linear and multi-variable predictive controller to control the speed and rotor flux of an induction motor, where the constraints are treated after the controller design. Besides dealing with the constraints of the electric drive system, our proposal allows increasing the stability of the system when the model does not incorporate disturbances and when parameter incompatibilities occur. Several computer simulations and experimental tests were performed to evaluate the behavior of the proposed controller, showing good performance to track the controlled variables under normal operating conditions, under load disturbances, parametric incompatibility, and at a very low rotor speed.



Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3608 ◽  
Author(s):  
Qianqian Wu ◽  
Ning Cui ◽  
Sifang Zhao ◽  
Hongbo Zhang ◽  
Bilong Liu

The environment in space provides favorable conditions for space missions. However, low frequency vibration poses a great challenge to high sensitivity equipment, resulting in performance degradation of sensitive systems. Due to the ever-increasing requirements to protect sensitive payloads, there is a pressing need for micro-vibration suppression. This paper deals with the modeling and control of a maglev vibration isolation system. A high-precision nonlinear dynamic model with six degrees of freedom was derived, which contains the mathematical model of Lorentz actuators and umbilical cables. Regarding the system performance, a double closed-loop control strategy was proposed, and a sliding mode control algorithm was adopted to improve the vibration isolation performance. A simulation program of the system was developed in a MATLAB environment. A vibration isolation performance in the frequency range of 0.01–100 Hz and a tracking performance below 0.01 Hz were obtained. In order to verify the nonlinear dynamic model and the isolation performance, a principle prototype of the maglev isolation system equipped with accelerometers and position sensors was developed for the experiments. By comparing the simulation results and the experiment results, the nonlinear dynamic model of the maglev vibration isolation system was verified and the control strategy of the system was proved to be highly effective.



2000 ◽  
Author(s):  
Randy T. Anderson ◽  
Perry Y. Li

Abstract A nonlinear dynamic model for an unconventional, commercially available electrohydraulic flow control servovalve is presented. The valve is a two-stage valve and differs from the conventional servovalve in that it does not require a feedback wire and ball, and the boost stage uses two spools, instead of a single spool, to meter flow into and out of the valve separately. Consequently, the valve is significantly less expensive. The proposed model captures the nonlinear and dynamic effects not present in previous models. The model has been coded in Simulink and experimentally validated.



Sign in / Sign up

Export Citation Format

Share Document