An analytical approach to evaluate the maximum load carrying capacity for pin-mounted telescopic hydraulic cylinder

Author(s):  
Jatin Prakash ◽  
Sumit Kumar Gupta ◽  
PK Kankar

The hydraulic cylinder is an actuating mechanical maneuver used to transfer the power from one station to another. For industrial purposes, various types of cylinders are employed as per the requirement. Telescopic hydraulic cylinder, also known as the two-stage hydraulic cylinder is one of the widely used hydraulic cylinders in the industry. The closed center length of a telescopic cylinder is 20% to 40% of the open center length depending on the number of stages. The safe operation of such telescopic hydraulic cylinder is highly essential. One of the prominent failures includes the buckling failure of the hydraulic cylinder. Once the system fails, the operating parameters change abruptly and thus the proper working gets affected. In literature, there is no significant standard that governs the buckling load determination of two-stage hydraulic cylinder. Existing technical standard ISO/TS 13725 : 2016 approach is only prescribed for the single-stage cylinder. In this manuscript, the emphasis is kept upon the determination of the buckling load for the two-stage pin-mounted telescopic hydraulic cylinder. The buckling governing equation has been derived to obtain the buckling load using an analytical approach. Additionally, the stress condition of cylinder barrels of different stages has been discussed per thick cylinder theory. The finite element analysis has been performed for various dimensions of the hydraulic cylinder. The results obtained from analytical results show close vicinity with the finite element results.

2021 ◽  
Vol 156 (A4) ◽  
Author(s):  
A Cubells ◽  
Y Garbatov ◽  
C Guedes Soares

The objective of the present study is to develop a new approach to model the initial geometrical imperfections of ship plates by using Photogrammetry. Based on images, Photogrammetry is able to take measurements of the distortions of plates and to catch the dominant surface shape, including the deformations of the edges. Having this data, it is possible to generate faithful models of plate surface based on third order polynomial functions. Finally, the maximum load- carrying capacity of the plates is analysed by performing a nonlinear finite element analysis using a commercial finite element code. Three un-stiffened and four stiffened plates have been modelled and analysed. For each plate, two initial imperfection models have been generated one, based on photogrammetric measurements and the other, based on the trigonometric Fourier functions. Both models are subjected to the same uniaxial compressive load and boundary conditions in order to study the ultimate strength.


2018 ◽  
Vol 68 (2) ◽  
pp. 167 ◽  
Author(s):  
V. Ramasamy ◽  
A.M. Junaid Basha

Multistage cylinders are generally used to lift and tilt heavy loads under controlled speed. In defence applications multistage cylinders are used in missile tilt platform and antenna mast. Earth moving equipment’s such as tippers, dumpers, cranes and compactors uses multistage cylinders for operations. In the present work multistage hydraulic cylinder (telescopic cylinder) with three stage has been analysed using strain energy method and verified with finite element analysis. The research work investigates the effect of internal clearances which reduces the critical buckling load of hydraulic cylinders. The results are validated by buckling load test. The clearances between the tube to piston guides, gland guide to piston rod, clearances due to tube expansion under pressure, initial curvature in the tube, eccentricity of cylinder components and tube ovality are considered in the buckling load test. Describes the comparative study of buckling load tests of three stage hydraulic cylinders having fixed free and hinged mounting with five different internal clearances.<br /><br />


Author(s):  
Mostafa S. ElSaadany ◽  
Maher Y. A. Younan ◽  
Hany F. Abdalla

Determination of shakedown boundaries of 90-degree plain smooth pipe bends has recently received substantial attention by several researchers. However, scarce or almost no solid information is found within the literature regarding the determination of the shakedown boundary of cracked pipe bends. The current research presents two additions to the literature namely: determination of shakedown boundary for a circumferentially cracked 90-degree pipe bend via a simplified technique utilizing the finite element method, and introduction of Fitness-Assessment-Diagrams (FAD) in compliance with the API 579 Fitness-for-Service assessment of pressure vessel and piping components. The analyzed cracked pipe bend is subjected to the combined effect of steady internal pressure spectrum and cyclic In-Plane Closing (IPC) and opening (IPO) bending moments. Line spring elements (LSE) are embedded in quadratic shell elements to model part through cracks. Fitness assessment diagrams (FAD) are obtained through linking the J-integral fracture mechanics parameter with the shakedown limit moments of the analyzed cracked 90-degree pipe bend. The LSE outcomes illustrated satisfactory results in comparison to the results of two verification studies: stress intensity factor and limit load. Additionally, full elastic-plastic cyclic loading finite element analyses are conducted and the outcomes revealed very good correlation with the results obtained via the simplified technique. The maximum load carrying capacity (limit moment) and the elastic domain are also computed thereby generating a Bree diagram for the cracked pipe bend.


1981 ◽  
Vol 103 (1) ◽  
pp. 239-243 ◽  
Author(s):  
N. Ravishankar

A method of analysis which permits the investigation of stresses and deflections in a hydraulic cylinder, using a finite element analytical model, is presented. The hydraulic cylinder is modeled as an assemblage of space frame elements with a fictitious rotary spring at the gland to consider the effect of seals and bearings at the rod-cylinder interface.


Author(s):  
Sarmila Sahoo

The present study investigates buckling characteristics of cut-out borne stiffened hyperbolic paraboloid shell panel made of laminated composites using finite element analysis to evaluate the governing differential equations of global buckling of the structure. The finite element code is validated by solving benchmark problems from literature. Different parametric variations are studied to find the optimum panel buckling load. Laminations, boundary conditions, depth of stiffener and arrangement of stiffeners are found to influence the panel buckling load. Effect of different parameters like cut-out size, shell width to thickness ratio, degree of orthotropy and fiber orientation angle of the composite layers on buckling load are also studied. Parametric and comparative studies are conducted to analyze the buckling strength of composite hyperbolic paraboloid shell panel with cut-out.


Author(s):  
Manish Kumar ◽  
Pronab Roy ◽  
Kallol Khan

From the recent literature, it is revealed that pipe bend geometry deviates from the circular cross-section due to pipe bending process for any bend angle, and this deviation in the cross-section is defined as the initial geometric imperfection. This paper focuses on the determination of collapse moment of different angled pipe bends incorporated with initial geometric imperfection subjected to in-plane closing and opening bending moments. The three-dimensional finite element analysis is accounted for geometric as well as material nonlinearities. Python scripting is implemented for modeling the pipe bends with initial geometry imperfection. The twice-elastic-slope method is adopted to determine the collapse moments. From the results, it is observed that initial imperfection has significant impact on the collapse moment of pipe bends. It can be concluded that the effect of initial imperfection decreases with the decrease in bend angle from 150∘ to 45∘. Based on the finite element results, a simple collapse moment equation is proposed to predict the collapse moment for more accurate cross-section of the different angled pipe bends.


Author(s):  
V. Ramirez-Elias ◽  
E. Ledesma-Orozco ◽  
H. Hernandez-Moreno

This paper shows the finite element simulation of a representative specimen from the firewall section in the AEROMARMI ESTELA M1 aircraft. This specimen is manufactured in glass and carbon / epoxy laminates. The specimen is subjected to a load which direction and magnitude are determined by a previous dynamic loads study [10], taking into account the maximum load factor allowed by the FAA (Federal Aviation Administration) for utilitarian aircrafts [11]. A representative specimen is manufactured with the same features of the firewall. Meanwhile a fix is built in order to introduce the load directions on the representative specimen. The relationship between load and displacement is plotted for this representative specimen, whence the maximum displacement at the specific load is obtained, afterwards it is compared with the finite element model, which is modified in its laminate thicknesses in order to decrease the deviation error; subsequently this features could be applied to perform the whole firewall analysis in a future model [10].


1983 ◽  
Vol 105 (2) ◽  
pp. 206-212 ◽  
Author(s):  
Hua-Ping Li ◽  
F. Ellyin

A plate weakened by an oblique penetration of a circular cylindrical hole has been investigated. The stress concentration around the hole is determined by a finite-element method. The results are compared with experimental data and other analytical works. Parametric studies of effects of angle of inclination, plate thickness, and width are performed. The maximum stress concentration factor (SCF) obtained from the finite-element analysis is higher than experimental results, and this deviation increases with the increase of angle of skewness. The major reason for this difference is attributed to the shear-action between layers parallel to the plate surface which cannot be directly included in the two-dimensional elements. An empirical formula is derived which accounts for the shear-action and renders the finite-element predictions in line with experimentally observed data.


Sign in / Sign up

Export Citation Format

Share Document