Coriolis effects on MHD newtonian flow over a rotating non-uniform surface

Author(s):  
Abayomi S Oke ◽  
Winifred N Mutuku ◽  
Mark Kimathi ◽  
Isaac Lare Animasaun

The roles of the simultaneous effect of Coriolis force and Lorentz force (resulting from MHD flow) in Sunspots, solar wind, and many other natural and physical phenomenon is undoubtedly significant. The impact of fluids heated by the Sun is influenced by the rotation of the earth’s surface and this necessitates the study of fluid flow over such surface as the Earth. For this reason, the significance of Coriolis force on MHD free-convection flow of Newtonian fluid over the rotating upper horizontal surface of paraboloid of revolution is explored. The relevant body forces are derived and included in the Navier-Stokes equations to obtain appropriate equations governing the flow. By nondimensionalizing the governing equations using similarity variables, the system of nonlinear partial differential equations is reduced to a system of nonlinear ordinary differential equations which is solved using Runge-Kutta-Gills method along with Shooting technique and the results are depicted graphically. It is observed that simultaneous increase in both Coriolis force and Lorentz force causes an increase in the temperature profile of the flow. It is also observed that the effect of increasing Coriolis force on the Skin Friction and heat transfer rate is counter-balanced by increasing Lorentz force.

Author(s):  
Nor Hathirah Abd Rahman ◽  
Norfifah Bachok ◽  
Haliza Rosali

In this study, an investigation of the steady 2-D magnetohydrodynamiic (MHD) flow of stagnation point past a nonlinear sheet of stretching/shrinking within of a non-uniform transverse magnetic intensity in nanofluids had been analysed. Considered material of nanoparticles such as copper (Cu) in water base fluid with Pr = 6.2 to analyze the influence of volume fraction parameter of nanoparticles and the stretching/shrinking sheet parameter. The governing nonlinear partial differential equations (PDEs) are converted in to the nonlinear ordinary differential equations (ODEs) and use the boundary value problem solver bvp4c in Matlab program to solve numerically through the use of a similarity transformation. The impact of the parameter of the magnetic field on the coefficient of skin friction, the local number of Nusselt and the profiles of velocity and temperature are portrayed and explained physically. The analysis reveals that the magnetic field and volume fraction of nanoparticles affect the velocity and temperature. The dual solutions are achieved where for the shrinking sheet case and the solutions are non-unique, different from a stretching sheet.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
I. Swain ◽  
S. R. Mishra ◽  
H. B. Pattanayak

An attempt has been made to study the heat and mass transfer effect in a boundary layer MHD flow of an electrically conducting viscous fluid subject to transverse magnetic field on an exponentially stretching sheet through porous medium. The effect of thermal radiation and heat source/sink has also been discussed in this paper. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations and then solved numerically using a fourth-order Runge-Kutta method with a shooting technique. Graphical results are displayed for nondimensional velocity, temperature, and concentration profiles while numerical values of the skin friction local Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.


Author(s):  
Luiz Tobaldini Neto ◽  
Ramon Papa ◽  
Luis C. de Castro Santos

Aircraft braking pads are subject to an extremely severe thermal environment. During a typical landing the carbon brake pads can reach temperatures up to 700–800 K or even more. Between landings during the taxi and parking phase the brakes have to cool off back to their operational limits in a time interval consistent with the average operational time. In order to evaluate the impact of design modifications on the wheel mounting and fairings, without the need of extensive laboratory and flight campaigns, a CFD (Computational Fluid Dynamics) based methodology was developed. Due to the geometry complexity the need of a geometrically representative, but simplified model comes up, in order to capture the major features of the natural convection flow and temperature fields and can be used to evaluate the influence of design changes on the braking system cooling times. A calibration procedure is carried out, aiming a better representation of the transient phenomenon, using a thermal resistances setting up feature from the solver used. An example of the application of this methodology is presented. A computational grid of over 700,000 tetrahedral elements was constructed and the Navier-Stokes equations are solved using a commercial package (FLUENT). The computational cost for a time accurate solution demands the use of parallel processing in order to complete the analysis in a typical industrial environment timeframe. Comparison with both laboratory and flight data calibrate and validate the results of the computational model. This paper describes the details of the construction of the CFD model, the setting of the initial and boundary conditions and the comparison between measured and simulated parameters.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
James B. Polly ◽  
J. M. McDonough

Control of fluid flow is an important, underutilized process possessing potential benefits ranging from avoidance of separation and stall on aircraft wings to reduction of friction in oil and gas pipelines to mitigation of noise from wind turbines. But the Navier-Stokes (N.-S.) equations, whose solutions describe such flows, consist of a system of time-dependent, multidimensional, nonlinear partial differential equations (PDEs) which cannot be solved in real time using current computing hardware. The poor man's Navier-Stokes (PMNS) equations comprise a discrete dynamical system that is algebraic—hence, easily (and rapidly) solved—and yet which retains many (possibly all) of the temporal behaviors of the PDE N.-S. system at specific spatial locations. Herein, we outline derivation of these equations and discuss their basic properties. We consider application of these equations to the control problem by adding a control force. We examine the range of behaviors that can be achieved by changing this control force and, in particular, consider controllability of this (nonlinear) systemvianumerical experiments. Moreover, we observe that the derivation leading to the PMNS equations is very general and may be applied to a wide variety of problems governed by PDEs and (possibly) time-delay ordinary differential equations such as, for example, models of machining processes.


2019 ◽  
Vol 24 (3) ◽  
pp. 725-737
Author(s):  
B. Zigta

Abstract An analysis is presented to study the effects of thermal radiation, chemical reaction, viscous and Joule dissipation on MHD free convection flow between a pair of infinite vertical Couette channel walls embedded in a porous medium. The fluid flows by a strong transverse magnetic field imposed perpendicularly to the channel wall on the assumption of a small magnetic Reynolds number. The governing non linear partial differential equations are transformed in to ordinary differential equations and are solved analytically. The effect of various parameters viz., Eckert number, electric conductivity, dynamic viscosity and strength of magnetic field on temperature profile has been discussed and presented graphically.


2017 ◽  
Vol 2 (2) ◽  
pp. 341-350 ◽  
Author(s):  
Vishwanath B. Awati

AbstractThis paper presents Dirichlet series and approximate analytical solutions of magnetohydrodynamic (MHD) flow due to a suction / blowing caused by boundary layer of an incompressible viscous flow. The governing nonlinear partial differential equations of momentum equations are reduced into a set of nonlinear ordinary differential equations (ODE) by using a classical similarity transformation along with appropriate boundary conditions. Both nonlinearity and infinite interval demand novel mathematical tools for their analysis. We use elegant fast converging Dirichlet series and approximate analytical solutions (method of stretching of variables) of these nonlinear differential equations. These methods have advantages over pure numerical methods for obtaining derived quantities accurately for various values of the parameters involved at a stretch and also they are valid in much larger parameter domains as compared with DTM-Padé and classical numerical schemes.


2020 ◽  
Vol 11 ◽  
pp. 1303-1315
Author(s):  
Ganji Narender ◽  
Kamatam Govardhan ◽  
Gobburu Sreedhar Sarma

This article proposes a numerical model to investigate the impact of the radiation effects in the presence of heat generation/absorption and magnetic field on the magnetohydrodynamics (MHD) stagnation point flow over a radially stretching sheet using a Casson nanofluid. The nonlinear partial differential equations (PDEs) describing the proposed flow problem are reduced to a set of ordinary differential equations (ODEs) via suitable similarity transformations. The shooting technique and the Adams–Moulton method of fourth order are used to obtain the numerical results via the computational program language FORTRAN. Nanoparticles have unique thermal and electrical properties which can improve heat transfer in nanofluids. The effects of pertinent flow parameters on the nondimensional velocity, temperature and concentration profiles are presented. Overall, the results show that the heat transfer rate increases for higher values of the radiation parameter in a Casson nanofluid.


2019 ◽  
Vol 26 ◽  
pp. 45-61
Author(s):  
Mhamed Tayeb ◽  
Mohamed Nadjib Bouaziz ◽  
Salah Hanini

Nonlinear density and temperature variation’s role (NDT) on the magnetohydrodynamic (MHD) natural convective flow of couple stress fluid with nanoparticles through a vertical porous channel modeled as Darcy-Forchheimer flow is the purpose of our work. The nanoparticles volume fraction is taken into consideration (Buongiorno model). The nonlinear partial differential equations governing this flow were transformed into ordinary differential equations via the similarity technique and simulated numerically using Matlab, following boundary value problem (BVP4c) code. Graphical illustrations, including non-dimensional velocity, temperature, concentration, nanoparticle’s concentration and numerical results containing Nusselt and Sherwood numbers were presented for different values of the non-linear part of the Boussinesq approximation; couple stress parameter, and the Biot number on the walls.


Open Physics ◽  
2011 ◽  
Vol 9 (1) ◽  
Author(s):  
Erik Sweet ◽  
Kuppalapalle Vajravelu ◽  
Robert Gorder

AbstractIn this paper we investigate the three-dimensional magnetohydrodynamic (MHD) rotating flow of a viscous fluid over a rotating sphere near the equator. The Navier-Stokes equations in spherical polar coordinates are reduced to a coupled system of nonlinear partial differential equations. Self-similar solutions are obtained for the steady state system, resulting from a coupled system of nonlinear ordinary differential equations. Analytical solutions are obtained and are used to study the effects of the magnetic field and the suction/injection parameter on the flow characteristics. The analytical solutions agree well with the numerical solutions of Chamkha et al. [31]. Moreover, the obtained analytical solutions for the steady state are used to obtain the unsteady state results. Furthermore, for various values of the temporal variable, we obtain analytical solutions for the flow field and present through figures.


2017 ◽  
Vol 139 (8) ◽  
Author(s):  
Behrooz Rahmani ◽  
Amin Moosaie

A method for distributed control of nonlinear flow equations is proposed. In this method, first, Takagi–Sugeno (T–S) fuzzy model is used to substitute the nonlinear partial differential equations (PDEs) governing the system by a set of linear PDEs, such that their fuzzy composition exactly recovers the original nonlinear equations. This is done to alleviate the mode-interaction phenomenon occurring in spectral treatment of nonlinear equations. Then, each of the so-obtained linear equations is converted to a set of ordinary differential equations (ODEs) using the fast Fourier transform (FFT) technique. Thus, the combination of T–S method and FFT technique leads to a number of ODEs for each grid point. For the stabilization of the dynamics of each grid point, the use is made of the parallel distributed compensation (PDC) method. The stability of the proposed control method is proved using the second Lyapunov theorem for fuzzy systems. In order to solve the nonlinear flow equation, a combination of FFT and Runge–Kutta methodologies is implemented. Simulation studies show the performance of the proposed method, for example, the smaller settling time and overshoot and also its relatively robustness with respect to the measurement noises.


Sign in / Sign up

Export Citation Format

Share Document