Dynamic research and experimental analysis of a longitudinal–torsional coupled impactor

Author(s):  
Jialin Tian ◽  
Zhe Deng ◽  
Hongzhi He

The rock breaking efficiency of drill bit is deeply affected with the increase of drilling depth. The increase length of the drill string leads to torsional stiffness decrease, which may even result in the stick-slip phenomena. In order to improve the rock breaking efficiency and reduce the stick-slip, this paper proposed a longitudinal–torsional coupled impactor. The internal working mechanism was carried out by theoretical analysis and experimental test. Moreover, comparing the computation and test results, the following conclusions can be obtained and verified. This innovative design can provide appropriate longitudinal-torsional coupled impact to drill bit during drilling process, and the movement of the hammer and pendulum is periodic. With the increasing flow rate of drilling fluid, this tool can generate corresponding larger impact force, torque and higher impact frequency. The theoretical analysis results are consistent with the experimental test results, which verify the reliability of the innovative design and the accuracy of theoretical analysis. This paper can provide reference for the innovative design of downhole drilling tool, the development of drilling dynamics and the improvement of drilling efficiency especially in the conditions of complex and ultra-deep wells.

Author(s):  
Jialin Tian ◽  
Jie Wang ◽  
Siqi Zhou ◽  
Yinglin Yang ◽  
Liming Dai

Excessive stick–slip vibration of drill strings can cause inefficiency and unsafety of drilling operations. To suppress the stick–slip vibration that occurred during the downhole drilling process, a drill string torsional vibration system considering the torsional vibration tool has been proposed on the basis of the 4-degree of freedom lumped-parameter model. In the design of the model, the tool is approximated by a simple torsional pendulum that brings impact torque to the drill bit. Furthermore, two sliding mode controllers, U1 and U2, are used to suppress stick–slip vibrations while enabling the drill bit to track the desired angular velocity. Aiming at parameter uncertainty and system instability in the drilling operations, a parameter adaptation law is added to the sliding mode controller U2. Finally, the suppression effects of stick–slip and robustness of parametric uncertainty about the two proposed controllers are demonstrated and compared by simulation and field test results. This paper provides a reference for the suppression of stick–slip vibration and the further study of the complex dynamics of the drill string.


Author(s):  
Jialin Tian ◽  
Genyin Li ◽  
Liming Dai ◽  
Lin Yang ◽  
Hongzhi He ◽  
...  

Torsional stick–slip vibrations easily occur when the drill bit encounters a hard or a hard-soft staggered formation during drilling process. Moreover, serious stick–slip vibrations of the drill string is the main factor leading to low drilling efficiency or even causing the downhole tools failure. Therefore, establishing the stick–slip theoretical model, which is more consistent with the actual field conditions, is the key point for new drilling technology. Based on this, a new torsional vibration tool is proposed in this paper, then the multidegree-of-freedom torsional vibrations model and nonlinear dynamic model of the drill string are established. Combined with the actual working conditions in the drilling process, the stick–slip reduction mechanism of the drill string is studied. The research results show that the higher rotational speed of the top drive, smaller viscous damping of the drill bit, and smaller WOB (weight on bit) will prevent the stick–slip vibration to happen. Moreover, the new torsional vibration tool has excellent stick–slip reduction effect. The research results and the model established in this paper can provide important references for reducing the stick–slip vibrations of the drill string and improving the rock-breaking efficiency.


Author(s):  
R Waring ◽  
J Hall ◽  
K Pullen ◽  
M R Etemad

A theoretical analysis of magnetic couplers is recounted, leading to the design and manufacture of prototype disc type magnetic couplers. Design and development of experimental test rigs are also given. Test results are presented and compared with theoretical calculations. This shows very good agreement. The exception to the rule was the case of axial load measurements, which were not accurately evaluated by the computations. The geometries tested here showed the optimum design to consist of rotors with eight poles, magnet thickness of 10 mm and a filling factor of about 0.7.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042093097
Author(s):  
Dou Xie ◽  
Zhiqiang Huang ◽  
Yuqi Yan ◽  
Yachao Ma ◽  
Yuan Yuan

Polycrystalline diamond compact bits have been widely used in the Oil and Gas drilling industry, despite the fact that they may introduce undesired vibration into the drilling process, for example, stick-slip and bit bounce, which accelerate the failure rate and lead to higher drilling costs. First, we develop an innovative ridge-ladder-shaped polycrystalline diamond compact cutter, which has ridge-shaped cutting faces and multiple cutting edges with stepped distribution, in the hope of reducing vibration and improving drilling speed. Then, the scrape tests of ridge-ladder-shaped and general polycrystalline diamond compact cutters are carried out in a laboratory, indicating that the cutting, lateral, and longitudinal forces on ridge-ladder-shaped polycrystalline diamond compact cutters are smaller and with minor fluctuations. Due to different rock-breaking mechanisms, ridge-ladder-shaped polycrystalline diamond compact cutters have higher cutting efficiency compared to general polycrystalline diamond compact cutters, which is also verified experimentally. Finally, the drilling characteristics of a new polycrystalline diamond compact bit fitted with some ridge-ladder-shaped polycrystalline diamond compact cutters are compared to those of a general polycrystalline diamond compact bit by means of finite element simulation. The results show that introducing ridge-ladder-shaped polycrystalline diamond compact cutters can not only reduce the stick-slip vibration, bit bounce, and backward rotation of drill bits effectively, but also improve their rate of penetration.


1992 ◽  
Author(s):  
M. HOLLAND ◽  
P. EGGERS ◽  
S. GUINTO ◽  
R. STEVENSON ◽  
GREGORY COLOMBO

2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


Author(s):  
Nitin P. Sherje ◽  
Sameer A. Agrawal ◽  
Ashish M. Umbarkar ◽  
Prashant P. Kharche ◽  
Dharmesh Dhabliya

Author(s):  
F. L. Eisinger ◽  
R. E. Sullivan

The tubular heat exchangers described exhibited a sensitivity to flow-induced tube vibration at about 50% of their design shell-side flow. Following a detailed theoretical analysis, the heat exchangers were modified by the helical spacer method providing additional tube supports in-between the existing support plates and in the U-bend. This modification aimed at allowing the heat exchangers to operate safely and reliably at full load, including a 25% overload. Post modification sound and vibration testing was performed which confirmed the adequacy of the modification. The test results showed however, that at the overload condition, an unusual acoustic wave inside the shell was developing. It was determined that this wave would not be harmful to the safe operation of the heat exchangers. The paper will discuss the findings in more detail.


Sign in / Sign up

Export Citation Format

Share Document