Collaborative optimization design of lightweight and crashworthiness of the front-end structures of automobile body using HW–GRA for Pareto mining

Author(s):  
Dengfeng Wang ◽  
Shenhua Li

To collaboratively improve the lightweight and frontal collision safety performance of the automobile body, the material–structure–performance integrated multi-objective optimization design of the front-end structure was implemented in this study. The hybrid weight–grey relational analysis (HW–GRA) method was proposed to address the problem that the Pareto optimal compromise solution of multi-objective optimization cannot be easily selected. The design variables of the material and structural parameters were recorded through material type coding and model parameterization. To satisfy the basic static–dynamic performance constraints of the body, the RSM–Kriging surrogate model, design of experiments, and multi-objective particle swarm optimization algorithm were used to optimize the material and structural parameters to improve the lightweight and crashworthiness of the body. The Pareto optimal compromise solution was determined using the HW–GRA method. The decision result of the proposed method was more robust and rational than those of single weighting techniques combined with GRA and hybrid weighting approach combined with TOPSIS. After the multi-objective optimization and decision-making, the basic static–dynamic performance of the body demonstrated a change of less than 2.0%, which satisfied the constraint requirements. The mass of the body was reduced by 2.4 kg, and the frontal collision safety performance of the body was significantly improved.

2020 ◽  
Vol 12 (10) ◽  
pp. 168781402096504
Author(s):  
Li Jixiong ◽  
Wang Daoyong

In this study, the integrated MSOT (M-Multi-dimensional factor autobody model, S-Screening autobody component, O-Optimization of plate thickness, T-Testing, and validation) integration method is adopted to optimize the automobile body structure design for weight reduction. First, a multi-dimensional factor body model is established, then components of the vehicle are screened for the most important targets related to weight reduction and performance, and a multi-objective optimization is performed. Virtual experiments were carried out to validate the analysis and the MSOT method were proposed for lightweight design of the automobile body structure. A multi-dimensional performance model that considers stiffness, modality, strength, frontal offset collision, and side collision of a domestic passenger car body structure. Components affecting the weight of the vehicle were identified. Sheet metal thickness was selected as the main optimization target and a multi-objective optimization was carried out. Finally, simulations were performed on the body structure. The comprehensive performance, in terms of fatigue strength, frontal offset collision safety, and side collision safety, was verified using the optimized Pareto solution set. The results show that the established MSOT method can be used to comprehensively explore the weight reduction of the body structure, shorten the development process, and reduce development costs.


Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 206
Author(s):  
Yipeng Zhang ◽  
Lidong He ◽  
Jianjiang Yang ◽  
Gang Zhu ◽  
Xingyun Jia ◽  
...  

In order to better control the vibration of the rotor system so as to improve the stability and safety of the rotor, a novel vibration control solution is needed. In this paper, the multi-objective optimization problem is used for designing a novel integral squeeze film bearing damper (ISFBD). The method attempts to reduce the stiffness and stress convergence of ISFBD, which can greatly decrease the transmitted force of the rotor system and better use the damping effect to dissipate the vibration energy. The finite element model of ISFBD is established to analyze the stiffness and stress, and the correctness of the calculation is verified by setting up a stiffness test platform. The sensitivity of different structural parameters of stiffness and stress is analyzed by ANOVA. Meanwhile, the non-dominated sorting genetic algorithm (NSGA-II) and grey correlation analysis (GRA) algorithms are coupled for multi-objective optimization of stiffness and stress. The results indicate that optimized ISFBD can distribute 26.6% of the rotor system’s energy and reduce 59.3% of the transmitted force at the bearing location. It is also proved that the optimization strategy is effective, which can provide a useful method for ISFBD design in practical applications.


2021 ◽  
Author(s):  
Jing Yao ◽  
Yiman Duan ◽  
Yingzhe Song ◽  
Hao Zhang ◽  
Mandi Li ◽  
...  

Abstract Three-way spatial fluid channel (TSFC) is commonly used in spatial fluid channels of the high hydraulic integrated system. However, the mathematic model of TSFC pressure loss is not clear, and what TSFC structural parameters in a certain space can get the minimum pressure loss and weight is also vague. Therefore, TSFC pressure loss mathematic model and multi-objective optimization about pressure loss, axis path length, and mass are studied in this paper. First, the mathematic model of TSFC pressure loss is established based on the response surface methodology and pressure loss models of fluid dynamics. Then, the optimized mathematic model for the TSFC structural parameters is built by the multi-objective optimization design method to achieve low pressure loss, short axis path length, and lightweight. According to the simulation, the results of optimized structure model show that the mass has been reduced 5.68%, and the pressure loss has been reduced 70.75% compared with the original model. Besides, the optimized TSFC structure model is manufactured by additive manufacturing, and the experiment is carried out to measure TSFC pressure loss. It shows that the error of pressure loss between the mathematic model and the experiment is only 1.6%, which verifies the accuracy of mathematic model of the pressure loss. This research lays a foundation for the design and optimization of the spatial flow channel in highly integrated hydraulic systems.


Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 5
Author(s):  
Chi Zhang ◽  
Xu Han ◽  
Tatiana Minav ◽  
Yongling Fu

Electro-hydrostatic actuators (EHAs) combine the advantages of electric and hydraulic actuation, and it results in a preferable solution for heavy load actuation. The required power level of the EHA is increasing because it is being introduced to large vehicles such as submarines and heavy launch vehicles. Thus, a 30 kW EHA is under development for launch vehicles, which simultaneously require high dynamic performance, light weight, high efficiency, etc. Therefore, a dedicated multi-objective optimization design method is proposed for the preliminary design of the 30 kW EHA. In this study, firstly, the design requirements were analyzed for the launch vehicle application, and the objectives and the constraints of the optimization design were defined for the 30 kW EHA. Secondly, dedicated models were developed for evaluating each objective or constraint, including weight, bandwidth, and efficiency. Thirdly, the multi-objective EHA optimization design was implemented based on the genetic algorithm. Lastly, the optimization design results were evaluated through simulation analysis, which demonstrated that the 30 kW EHA achieved more than 10 Hz bandwidth with under 72 kg weight while the efficiency was also optimized.


2021 ◽  
Vol 13 (4) ◽  
pp. 1929
Author(s):  
Yongmao Xiao ◽  
Wei Yan ◽  
Ruping Wang ◽  
Zhigang Jiang ◽  
Ying Liu

The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production.


Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 107
Author(s):  
Rongchao Jiang ◽  
Zhenchao Jin ◽  
Dawei Liu ◽  
Dengfeng Wang

In order to reduce the negative effect of lightweighting of suspension components on vehicle dynamic performance, the control arm and torsion beam widely used in front and rear suspensions were taken as research objects for studying the lightweight design method of suspension components. Mesh morphing technology was employed to define design variables. Meanwhile, the rigid–flexible coupling vehicle model with flexible control arm and torsion beam was built for vehicle dynamic simulations. The total weight of control arm and torsion beam was taken as optimization objective, as well as ride comfort and handling stability performance indexes. In addition, the fatigue life, stiffness, and modal frequency of control arm and torsion beam were taken as the constraints. Then, Kriging model and NSGA-II were adopted to perform the multi-objective optimization of control arm and torsion beam for determining the lightweight scheme. By comparing the optimized and original design, it indicates that the weight of the optimized control arm and torsion beam are reduced 0.505 kg and 1.189 kg, respectively, while structural performance and vehicle performance satisfy the design requirement. The proposed multi-objective optimization method achieves a remarkable mass reduction, and proves to be feasible and effective for lightweight design of suspension components.


Author(s):  
Qianhao Xiao ◽  
Jun Wang ◽  
Boyan Jiang ◽  
Weigang Yang ◽  
Xiaopei Yang

In view of the multi-objective optimization design of the squirrel cage fan for the range hood, a blade parameterization method based on the quadratic non-uniform B-spline (NUBS) determined by four control points was proposed to control the outlet angle, chord length and maximum camber of the blade. Morris-Mitchell criteria were used to obtain the optimal Latin hypercube sample based on the evolutionary operation, and different subsets of sample numbers were created to study the influence of sample numbers on the multi-objective optimization results. The Kriging model, which can accurately reflect the response relationship between design variables and optimization objectives, was established. The second-generation Non-dominated Sorting Genetic algorithm (NSGA-II) was used to optimize the volume flow rate at the best efficiency point (BEP) and the maximum volume flow rate point (MVP). The results show that the design parameters corresponding to the optimization results under different sample numbers are not the same, and the fluctuation range of the optimal design parameters is related to the influence of the design parameters on the optimization objectives. Compared with the prototype, the optimized impeller increases the radial velocity of the impeller outlet, reduces the flow loss in the volute, and increases the diffusion capacity, which improves the volume flow rate, and efficiency of the range hood system under multiple working conditions.


Sign in / Sign up

Export Citation Format

Share Document