Development of adaptive gear shifting strategies of automatic transmission for plug-in hybrid electric commuting vehicle based on optimal energy economy

Author(s):  
Peihong Shen ◽  
Zhiguo Zhao ◽  
Jingwei Li ◽  
Qiuyi Guo

Gear shifting strategy of automatic transmission has an important impact on the fuel economy of vehicles. For plug-in hybrid electric commuting vehicles, to develop the driving cycle and working mode adaptive gear shifting strategy of automatic transmission is of great significance to improve the vehicle energy economy. Three main efforts have been made to distinguish our work from exiting research. First, based on the fixity and repeatability of the driving cycle for plug-in hybrid electric commuting vehicles, the typical driving cycle of plug-in hybrid electric commuting vehicle is constructed by the self-organized mapping and K-means clustering methods. Second, in the typical plug-in hybrid electric commuting vehicle driving cycle constructed herein, the working points with the best energy economy are calculated by improved dynamic programming for each working mode of the plug-in hybrid electric commuting vehicle, considering the working efficiency of the power components and transmission. On this basis, the optimal gear shifting strategy of automatic transmission for the plug-in hybrid electric commuting vehicle in each working mode is extracted. Third, the simulation tests are conducted which compare the formulated adaptive gear shifting strategies with the traditional engine fuel economy-based gear shifting strategy. The simulation results illustrate that the adaptive gear shifting strategies increase the energy economy by 3.32%. The proposed gear shifting strategy development method can provide a reference for further optimization of automatic transmission gear shifting strategies of plug-in hybrid electric commuting vehicle for real applications.

2018 ◽  
Vol 9 (4) ◽  
pp. 51 ◽  
Author(s):  
Chengguo Li ◽  
Eli Brewer ◽  
Liem Pham ◽  
Heejung Jung

Air conditioner power consumption accounts for a large fraction of the total power used by hybrid and electric vehicles. This study examined the effects of three different cabin air ventilation settings on mobile air conditioner (MAC) power consumption, such as fresh mode with air conditioner on (ACF), fresh mode with air conditioner off (ACO), and air recirculation mode with air conditioner on (ACR). Tests were carried out for both indoor chassis dynamometer and on-road tests using a 2012 Toyota Prius plug-in hybrid electric vehicle. Real-time power consumption and fuel economy were calculated from On-Board Diagnostic-II (OBD-II) data and compared with results from the carbon balance method. MAC consumed 28.4% of the total vehicle power in ACR mode when tested with the Supplemental Federal Test Procedure (SFTP) SC03 driving cycle on the dynamometer, which was 6.1% less than in ACF mode. On the other hand, ACR and ACF mode did not show significant differences for the less aggressive on-road tests. This is likely due to the significantly lower driving loads experienced in the local driving route compared to the SC03 driving cycle. On-road and SC03 test results suggested that more aggressive driving tends to magnify the effects of the vehicle HVAC (heating, ventilation, and air conditioning) system settings. ACR conditions improved relative fuel economy (or vehicle energy efficiency) to that of ACO conditions by ~20% and ~8% compared to ACF conditions for SC03 and on-road tests, respectively. Furthermore, vehicle cabin air quality was measured and analyzed for the on-road tests. ACR conditions significantly reduced in-cabin particle concentrations, in terms of aerosol diffusion charger signal, by 92% compared to outside ambient conditions. These results indicate that cabin air recirculation is a promising method to improve vehicle fuel economy and improve cabin air quality.


2018 ◽  
Vol 10 (11) ◽  
pp. 168781401881102
Author(s):  
QIN Shi ◽  
Duoyang Qiu ◽  
Lin He ◽  
Bing Wu ◽  
Yiming Li

For a great influence on the fuel economy and exhaust, driving cycle recognition is becoming more and more widely used in hybrid electric vehicles. The purpose of this study is to develop a method to identify the type of driving cycle in real time with better accuracy and apply the driving cycle recognition to minimize the fuel consumption with dynamic equivalent fuel consumption minimization strategy. The support vector machine optimized by the particle swarm algorithm is created for building driving cycle recognition model. Furthermore,the influence of the two parameters of window width and window moving velocity on the accuracy is also analyzed in online application. A case study of driving cycle in a medium-sized city is introduced based on collecting four typical driving cycle data in real vehicle test. A series of characteristic parameters are defined and principal component analysis is used for data processing. Finally, the driving cycle recognition model is used for equivalent fuel consumption minimization strategy with a parallel hybrid electric vehicle. Simulation results show that the fuel economy can improve by 9.914% based on optimized support vector machine, and the fluctuations of battery state of charge are more stable so that system efficiency and batter life are substantially improved.


2020 ◽  
Vol 11 (4) ◽  
pp. 65
Author(s):  
Fengqi Zhang ◽  
Lihua Wang ◽  
Serdar Coskun ◽  
Yahui Cui ◽  
Hui Pang

This article presents an energy management method for a parallel hybrid electric vehicle (HEV) based on approximate Pontryagin’s Minimum Principle (A-PMP). The A-PMP optimizes gearshift commands and torque distribution for overall energy efficiency. As a practical numerical solution in PMP, the proposed methodology utilizes a piecewise linear approximation of the engine fuel rate and state of charge (SOC) derivative by considering drivability and fuel economy simultaneously. Moreover, battery aging is explicitly studied by introducing a control-oriented model, which aims to investigate the effect of battery aging on the optimization performance in the development of the HEVs. An approximate energy management strategy with piecewise linear models is then formulated by the A-PMP, which targets a better performance for the Hamiltonian optimization. The gearshift map is extracted from the optimal results in the standard PMP to hinder frequent gearshift by considering both drivability and fuel economy. Utilizing an approximated Hamilton function, the torque distribution, gearshift command, and the battery aging degradation are jointly optimized under a unified framework. Simulations are performed for dynamic programming (DP), PMP, and A-PMP to validate the effectiveness of the proposed approach. The results indicate that the proposed methodology achieves a close fuel economy compared with the DP-based optimal solution. Moreover, it improves the computation efficiency by 50% and energy saving by 3.5%, compared with the PMP, while ensuring good drivability and fuel efficiency.


2021 ◽  
Vol 144 (2) ◽  
Author(s):  
Qilun Zhu ◽  
Robert Prucka

Abstract This research proposes an iterative dynamic programing (IDP) algorithm that generates an optimal supervisory control policy for hybrid electric vehicles (HEVs) considering transient powertrain dynamics. The proposed algorithm tries to solve the “curse of dimensionality” and the “curse of modeling” of conventional dynamic programing (DP). The proposed IDP algorithm iteratively updates the DP formulation using a machine learning-based powertrain model. The machine learning model is recursively trained using the outputs from the driving cycle simulation with a high-fidelity model. Once the reduced model converges to the high-fidelity model accuracy, the resulting control policy yields a 9.1% fuel economy (FE) improvement compared to the baseline nonpredictive rule-based control for the urban dynamometer driving schedule (UDDS) driving cycle. A conventional DP control strategy based on a quasi-static powertrain model and a perfect preview of future power demand yields 14.2% FE improvement. However, the FE improvement reduces to 5.7% when the policy is validated with the high-fidelity model. It is concluded that capturing the transient powertrain dynamics is critical to generating a realistic fuel economy prediction and relevant powertrain control policy. The proposed IDP strategy employs targeted state-space exploration to leverage the improving state trajectory from previous iterations. Compared to conventional fixed state-space sampling methods, this method improves the accuracy of the DP policy against discretization error. It also significantly reduces the computational load of the relatively high number of states of the transient powertrain model.


2011 ◽  
Vol 383-390 ◽  
pp. 4708-4712
Author(s):  
Qing Yong Zhang

his paper is concerned with the fuel economy of a mini car with power split automatic transmission (PSAT) by means of simulation. Firstly, a PSAT prototype is developed featured with high efficiency by power split. Secondly, mathematic models of PSAT, based on the PSAT scheme and experiment on the prototype, is established and embedded into the simulation software NREL’s Advanced Vehicle Simulator (ADVISOR) to carry out the whole vehicle fuel economy simulation. Thirdly, fuel economy comparison between vehicle with PSAT and traditional mechanical transmission is present, after fuel economy simulation under different driving cycle. Finally, approach to the energy save scheme of PSAT and matching between PSAT and the whole vehicle is discussed which builds up a good foundation for future optimization on control strategy of PSAT.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5538
Author(s):  
Bảo-Huy Nguyễn ◽  
João Pedro F. Trovão ◽  
Ronan German ◽  
Alain Bouscayrol

Optimization-based methods are of interest for developing energy management strategies due to their high performance for hybrid electric vehicles. However, these methods are often complicated and may require strong computational efforts, which can prevent them from real-world applications. This paper proposes a novel real-time optimization-based torque distribution strategy for a parallel hybrid truck. The strategy aims to minimize the engine fuel consumption while ensuring battery charge-sustaining by using linear quadratic regulation in a closed-loop control scheme. Furthermore, by reformulating the problem, the obtained strategy does not require the information of the engine efficiency map like the previous works in literature. The obtained strategy is simple, straightforward, and therefore easy to be implemented in real-time platforms. The proposed method is evaluated via simulation by comparison to dynamic programming as a benchmark. Furthermore, the real-time ability of the proposed strategy is experimentally validated by using power hardware-in-the-loop simulation.


2021 ◽  
Vol 292 ◽  
pp. 126040
Author(s):  
Xiaohua Zeng ◽  
Qifeng Qian ◽  
Hongxu Chen ◽  
Dafeng Song ◽  
Guanghan Li

2013 ◽  
Vol 288 ◽  
pp. 142-147 ◽  
Author(s):  
Shang An Gao ◽  
Xi Ming Wang ◽  
Hong Wen He ◽  
Hong Qiang Guo ◽  
Heng Lu Tang

Fuel cell hybrid electric vehicle (FCHEV) is one of the most efficient technologies to solve the problems of the energy shortage and the air pollution caused by the internal-combustion engine vehicles, and its performance strongly depends on the powertrains’ matching and its energy control strategy. The theoretic matching method only based on the theoretical equation of kinetic equilibrium, which is a traditional method, could not take fully use of the advantages of FCHEV under a certain driving cycle because it doesn’t consider the target driving cycle. In order to match the powertrain that operates more efficiently under the target driving cycle, the matching method based on driving cycle is studied. The powertrain of a fuel cell hybrid electric bus (FCHEB) is matched, modeled and simulated on the AVL CRUISE. The simulation results show that the FCHEB has remarkable power performance and fuel economy.


2011 ◽  
Vol 121-126 ◽  
pp. 2710-2714
Author(s):  
Ling Cai ◽  
Xin Zhang

With the requirements for reducing emissions and improving fuel economy, it has been recognized that the electric, hybrid electric powered drive train technologies are the most promising solution to the problem of land transportation in the future. In this paper, the parameters of series hybrid electric vehicle (SHEV), including engine-motor, battery and transmission, are calculated and matched. Advisor software is chosen as the simulation platform, and the major four parameters are optimized in orthogonal method. The results show that the optimal method and the parameters can improve the fuel economy greatly.


Sign in / Sign up

Export Citation Format

Share Document