Vibration reduction performance of an innovative vehicle seat with a vibration absorber and variable damping cushion

Author(s):  
Pu Gao ◽  
Hui Liu ◽  
Changle Xiang ◽  
Pengfei Yan

Road driving conditions are complicated, and road unevenness and speed bumps are main sources of vibration that cause the discomfort of passengers in vehicles. The vehicle seat can effectively reduce the system damage and human discomfort caused by this vibration. In this paper, an innovative damping seat that combines a vibration absorber and variable damping cushion is proposed for better vibration reduction performance under different external road excitations. A practical vertical human-seat-vehicle model is established, and uneven road excitation considering trapezoidal speed bumps and rectangular speed bumps is applied to the vertical model. The vibration reduction mechanisms of four different seats (without the absorber and variable damping cushion, with the absorber, with the variable damping cushion and with the new damping seat) are studied by comprehensive time-frequency analysis of the vibration responses. A comparison verifies the improved vibration damping performance of the newly proposed scheme, providing good theoretical guidance for the development of damping seats.

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1345
Author(s):  
Xiaopeng Li ◽  
Fanjie Li ◽  
Dongyang Shang

The “inerter-spring-damper” (ISD) suspension system is a suspension system composed of an inerter, spring, and damper. To study the ride comfort and stability of the vehicle by using the ISD suspension system, a vehicle model with ISD suspension is established in this paper. The vehicle model including vertical, pitch, roll, and yaw motion of the vehicle body. Based on the vehicle model, the differential equation of motion with ISD suspension is obtained. The dynamic responses of the ISD suspension system are investigated by using different road excitations. At the same time, the influence of coupled excitation and single excitation on the vibration reduction performance of the ISD suspension system is studied. Then, the dynamic responses of ISD suspension and passive suspension are compared, and the improvement of comprehensive vibration reduction performance of ISD suspension system is quantitatively analyzed. The numerical results illustrate the ISD suspension has the optimal vehicle speed under different road excitations, and the comprehensive vibration reduction performance of the ISD suspension is the best when driving at the optimal vehicle speed. Under different types of road excitation, ISD suspension shows excellent comprehensive vibration reduction performance. ISD suspension is more suitable for vibration reduction of complex roads than that of a single road.


2014 ◽  
Vol 657 ◽  
pp. 644-648 ◽  
Author(s):  
Andrzej Dymarek ◽  
Tomasz Dzitkowski

The paper presents the use of synthesis methods to determine the parameters of passive vibration reduction in mechanical systems. Passive vibration reduction in a system is enabled by units called dampers whose values are determined on the basis of the method formulated and formalized by the authors. The essence of the method are, established at the beginning of a task, dynamic characteristics in the form of the resonance and anti-resonance frequencies, and amplitudes of displacement, velocity or acceleration of vibration.


2011 ◽  
Vol 464 ◽  
pp. 195-198
Author(s):  
Qi Zhi Yang ◽  
Guo Quan Huang ◽  
Chen Long ◽  
Xiao Bing Zhu

Vibration of vehicle system is a typical vibration of multi-degree freedom. The damping performance of multi-degree freedom seat suspension is important to ride comfort of vehicle occupants. Based on the multi-dimensional movement principle of parallel mechanism, it is built a new vehicle seat with 3-DOF suspension. It is Established a kinematics model and then analyzed the theory of the displacement of the parallel vehicle seat system. Finally, using ADAMS software to build the simulation models of seat suspension, it is showed that the seat vibration system has a good effort on vibration reduction.


2020 ◽  
Vol 10 (11) ◽  
pp. 3934 ◽  
Author(s):  
Un-Chang Jeong

The present study on vibration reduction in systems wherein the excitation frequency is variable designed and fabricated a magnetorheological elastomer (MRE)-based tunable dynamic vibration absorber and evaluated its performance in an experimental manner. The design of an MRE-based adaptive tuned dynamic vibration absorber (ATDVA) involves designing two parts: stiffness and mass. Before designing the MRE-based ATDVA, this study determined the resonance frequency of a target object for vibration reduction. For the design of the ATDVA’s stiffness part, the thickness of specimens was determined by measuring the rate of variation of the MRE’s shear modulus with respect to the MRE’s thickness. The design of the mass part was optimized using sensitivity analysis and genetic algorithms after the derivation of formulas for its magnetic field and mass. Further, upon the application of an electric current to the MRE, its stiffness was measured so that the stiffness of the designed MRE-based ATDVA could be tuned accordingly. Finally, the vibration-reducing performance of the MRE-based ATDVA was evaluated to determine the applicability of the vibration absorber under the condition of variable-frequency excitation.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 812
Author(s):  
Feng Gao ◽  
Bingqiang Li ◽  
Xiuting Liu

To improve the reliability and safety of the mistuned blisk (integrally bladed disk), a novel strategy for passive vibration reduction by the hard coating was developed, and the vibration and damping characteristics of the HCM (hard-coating mistuned) blisk were investigated in this work. Firstly, by the proposed criterion called FDSD (frequency difference and its standard deviation), a classical reduced-order model established by the component mode synthesis method was modified to carry out modal analysis for high computational efficiency. Then, forced vibration responses of the HCM blisk were achieved by the Rayleigh damping model. Next, a specific benchmark of a mistuned blisk deposited NiCoCrAlY + YSZ hard coating was chosen to conduct numerical calculations, and the results were compared with those obtained from the FOM (full-order model) and experimental test, respectively. Finally, the influence of the hard coating and coating thickness on the mistuned blisk were investigated, in particular.


2011 ◽  
Vol 189-193 ◽  
pp. 152-159
Author(s):  
Xiao Mei Miao ◽  
Xiao Diao Huang

Friction is a phenomenon caused by relative motion, which can be used to absorb vibrational energy. The influence of friction on vibration responses of structures is complex due to the complicacy and nonlinear of the friction itself. In this paper, a 3-DOF spring-damper model with/without friction force was studied to expose how the friction governed the vibratory responses. Several popular friction models were reviewed and LuGre Model was used in this paper. The vibration properties under sine excitation and random were simulated by the Matlab Simulink Software. The results showed that friction absorbed vibration well and vibration damping was rapid. The characteristics of friction influence resulted from comprehensive functions of all factors, such as types of excitation, excitation amplitude and frequency and the location of friction.


Sign in / Sign up

Export Citation Format

Share Document