Stability control based on three-dimensional portraits for four-wheel-independent-drive EV

Author(s):  
Jianfeng Ruan ◽  
Dawei Pi ◽  
Kaihang Jiang ◽  
Hongliang Wang ◽  
Boyuan Xie

In this paper, a two-stage expectation stability controller was proposed for driving stability of four wheel independent drive electric vehicles. The proposed controller has three levels. There were three steps to the stability control of the vehicle. First, the three-dimensional state portraits were drawn based on the 14DOFs vehicle model and used the s tem equation to find two-stage expectation. The surface was derived from the analysis of the tire-road adhesion divides the portraits into safe areas and unsafe areas. Second, the stability controller with sliding mode algorithm was designed. When the state parameter is in the unsafe areas, the safe boundary surface is taken as the first-stage expectation; after the system enters the safe areas, the stem is taken as the second-stage expectation. Then the fuzzy algorithm is applied to distribute the control demand of yaw moment to generate the torques of each in-wheel motor. Finally, simulation verification is performed in Simulink-CarSim co-simulation environment. The simulation results show that the designed control strategy can improve the lateral stability while the loss of longitudinal speed is within 3.25%.

Author(s):  
Juan S. Núñez ◽  
Luis E. Muñoz

With the aim of prevent situations of vehicle instability against different driving maneuvers, the vehicle yaw stability becomes crucial for safe operation. This paper presents the design and simulation of a traction and a stability control system algorithms for independent four-wheel-driven electric vehicle. The stability control system consists of a multilevel algorithm divided into a high level controller and a low level controller. First, an analysis of the stability of the vehicle is performed using phase portraits analysis, both in open loop and closed loop. The stability control system is designed to generate a desired yaw moment according to the steady state cornering relationship with the steering angle input. As the test vehicle, a 14 DoF vehicle model is proposed including nonlinear tire models that allow the generation of combined forces. The vehicle model includes the powertrain dynamics. The yaw moment generation is performed using the traction and braking forces between the tires of each side of both front and rear axle. In order to generate the maximum traction forces in each of the wheels, a traction and a braking control is developed via a sliding mode controller scheme. Finally a performance comparison between a controlled and an uncontrolled vehicle is presented. The behavior of both vehicles is simulated using a classical double lane change driving maneuver.


2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Kun Yang ◽  
Danxiu Dong ◽  
Chao Ma ◽  
Zhaoxian Tian ◽  
Yile Chang ◽  
...  

Tire longitudinal forces of electrics vehicle with four in-wheel-motors can be adjusted independently. This provides advantages for its stability control. In this paper, an electric vehicle with four in-wheel-motors is taken as the research object. Considering key factors such as vehicle velocity and road adhesion coefficient, the criterion of vehicle stability is studied, based on phase plane of sideslip angle and sideslip-angle rate. To solve the problem that the sideslip angle of vehicles is difficult to measure, an algorithm for estimating the sideslip angle based on extended Kalman filter is designed. The control method for vehicle yaw moment based on sliding-mode control and the distribution method for wheel driving/braking torque are proposed. The distribution method takes the minimum sum of the square for wheel load rate as the optimization objective. Based on Matlab/Simulink and Carsim, a cosimulation model for the stability control of electric vehicles with four in-wheel-motors is built. The accuracy of the proposed stability criterion, the algorithm for estimating the sideslip angle and the wheel torque control method are verified. The relevant research can provide some reference for the development of the stability control for electric vehicles with four in-wheel-motors.


Author(s):  
Fei Ma ◽  
Yunjie Wu ◽  
Siqi Wang ◽  
Xiaofei Yang ◽  
Yueyang Hua

This paper presents an adaptive fixed-time guidance law for the three-dimensional interception guidance problem with impact angle constraints and control input saturation against a maneuvering target. First, a coupled guidance model formulated by the relative motion equation is established. On this basis, a fixed-time disturbance observer is employed to estimate the lumped disturbances. With the help of this estimation technique, the adaptive fixed-time sliding mode guidance law is designed to accomplish accurate interception. The stability of the closed-loop guidance system is proven by the Lyapunov method. Simulation results of different scenarios are executed to validate the effectiveness and superiority of the proposed guidance law.


Author(s):  
Yiwen Huang ◽  
Yan Chen

This paper presents a novel vehicle lateral stability control method based on an estimated lateral stability region on the phase plane of vehicle yaw rate and lateral speed, which is obtained through a local linearization method. Since the estimated stability region does not only describe vehicle local stability, but also define the oversteering and understeering characteristics, the proposed control method can achieve both local stability and vehicle handling stability. Considering the irregular geometric shape of the estimated stability region, a stability analysis algorithm is designed to determine the distance between vehicle states and stability region boundaries. State estimation or measurement errors are also incorporated in the distance calculation. Based on the calculated shortest distance between vehicle states and stability boundaries, a direct yaw moment controller is designed to maintain vehicle states stay within the stability region. CarSim® and Simulink® co-simulation is applied to verify the control design through a cornering maneuver. The simulation results show that the proposed control method can make the vehicle stay within the stability region successfully and thus always operate in a safe manner.


2019 ◽  
Vol 19 (1) ◽  
pp. 26-35 ◽  
Author(s):  
Xuan Luo ◽  
Gaoming Jiang ◽  
Honglian Cong

Abstract This paper focuses on the better performance between the garment simulation result and the simulation speed. For simplicity and clarity, a notation “PART” is defined to indicate the areas between the garment and the human body satisfying some constraints. The discrete mechanical model can be achieved by the two-stage process. In the first stage, the garment can be divided into several PARTs constrained by the distance. In the second stage, the mechanical model of each PART is formulated with a mathematical expression. Thus, the mechanical model of the garment can be obtained. Through changing the constrained distance, the simulation result and the simulation speed can be observed. From the variable distance, a desired value can be chosen for an optimal value. The results of simulations and experiments demonstrate that the better performance can be achieved at a higher speed by saving runtime with the acceptable simulation results and the efficiency of the proposed scheme can be verified as well.


2012 ◽  
Vol 588-589 ◽  
pp. 1552-1559
Author(s):  
Lu Zhang ◽  
Guo Ye Wang ◽  
Guo Yan Chen ◽  
Zhong Fu Zhang

This paper proposes an active braking control dynamical system in order to establish a safe and efficient vehicle driving stability control test system. Aiming at Chery A3 sedan, set up the active braking control dynamic simulation system base on MATLAB/Simulink. Adopting the brake driving integration ESP control strategy, analyze and verify the stability control performance of independent vehicle system and vehicle ESP test system based on active braking control respectively in under steering and excessive steering two test conditions. The analyzing results indicate that the test system based on active braking control can effectively assist vehicle travelling in the absence of ESP control or ESP control system failure; when vehicle has ESP control system, the driving stability control performance of this system and independent vehicle system has remarkable consistency. The active braking control system provides a basis for research of vehicle driving stability control test.


Author(s):  
Jiaxing Yu ◽  
Xiaofei Pei ◽  
Xuexun Guo ◽  
JianGuo Lin ◽  
Maolin Zhu

This paper proposes a framework for path tracking under additive disturbance when a vehicle travels at high speed or on low-friction road. A decoupling control strategy is adopted, which is made up of robust model predictive control and the stability control combining preview G-vectoring control and direct yaw moment control. A vehicle-road model is adopted for robust model predictive control, and a robust positively invariant set calculated online ensures state constraints in the presence of disturbances. Preview G-vectoring control in stability control generates deceleration and acceleration based on lateral jerk, later acceleration, and curvature at preview point when a vehicle travels through a cornering. Direct yaw moment control with additional activating conditions provides an external yaw moment to stabilize lateral motion and enhances tracking performance. A comparative analysis of stability performance of stability control is presented in simulations, and furthermore, many disturbances are considered, such as varying wind, road friction, and bounded state disturbances from motion planning and decision making. Simulation results show that the stability control combining preview G-vectoring control and direct yaw moment control with additional activating conditions not only guarantees lateral stability but also improves tracking performance, and robust model predictive control endows the overall control system with robustness.


2014 ◽  
Vol 709 ◽  
pp. 331-334
Author(s):  
Man Hong Huang ◽  
Huan Shen ◽  
Yun Sheng Tan

In this paper, a vehicle stability control system is proposed to improve vehicle comfort, handling and stability. The control system includes reference model, DYC controller and Distributer. Reference model is used to obtain the desired yaw rate. DYC controller determines the desired yaw moment by means of sliding-mode technique. Distributer, based on maneuverability and comfort, distributes driving torque or braking torque according to the desired yaw rate. Simulation result shows that the proposed control algorithm can improve vehicle handling and stability effectively.


2013 ◽  
Vol 644 ◽  
pp. 123-128
Author(s):  
Ling Yu Sun ◽  
Jian Hua Zhang ◽  
Xiao Jun Zhang

The wheel-legged mobile robot in a complex three-dimensional environment has strong through capacity .Study is very critical for the stability of the control of their body systems. In this paper , based on analysis of the structure of wheel-legged mobile robot designed, the stability is evaluated by the use of (Effective Mass Center) EMC , and the stability domain is established accordingly. A fuzzy adaptive PID control method is created , and verified by ADAMS and MATLAB co-simulation . Simulation results show that the robot in different terrestrial environment, can maintain good stability.


Sign in / Sign up

Export Citation Format

Share Document