scholarly journals Entropy Generation and Bejan Number Analysis of MHD Casson Fluid Flow in a Micro-Channel with Navier Slip and Convective Boundary Conditions

Author(s):  
M. Venkateswarlu ◽  
P. Bhaskar

The analysis of MHD flow has been a concern of consideration for research scientists and engineers. In this treatise, the steady MHD flow of an incompressible and electrically conducting Casson fluid in a micro-channel with heat generation and viscous dissipation, in the presence of hydrodynamic slip and convective boundary conditions, is examined. Exact solutions of non-dimensional steady governing equations are obtained in closed form. Transient fluid velocity, temperature, entropy generation, and Bejan number are depicted by the line graphs whereas rate of heat transfer and skin-friction coefficient are computed in tabular form for pertinent flow parameters. It is established that the entropy generation rate and Bejan number increases for increasing values of the Casson parameter and heat generation parameter. In particular, the Casson parameter accelerates the skin-friction coefficient while it provides resistance to the rate of heat transfer near the channel walls. Casson fluid finds significant applications in biomechanics, polymer processing industries, and food processing.

2018 ◽  
Vol 16 ◽  
pp. 120-139 ◽  
Author(s):  
N.S. Shashikumar ◽  
B.C. Prasannakumara ◽  
Bijjanal Jayanna Gireesha ◽  
Oluwole Daniel Makinde

The heat transfer and entropy generation in a MHD flow of Casson fluid through a porous microchannel with thermal radiation were investigated numerically. Combined effects of suction/injection, hydrodynamic slip, magnetic field and convective boundary condition on the heat transfer and entropy generation are studied. The dimensionless equations are solved numerically by using fourth-fifth-order Runge–Kutta integration method along with shooting technique. Moreover, influences of pertinent parameters on velocity, temperature and entropy generation were discussed in detail and illustrated graphically. Based on numerical results, we can see that, entropy generation rate increases with an increase in radiation parameter and Biot number. As Hartmann number increases, the entropy generation decreases at the both cooled and heated plates and increases at the centerline region of the microchannel.


2019 ◽  
Vol 29 (12) ◽  
pp. 4507-4530 ◽  
Author(s):  
Muhammad Ijaz Khan ◽  
Salman Ahmad ◽  
Tasawar Hayat ◽  
M. Waleed Ahmad Khan ◽  
Ahmed Alsaedi

Purpose The purpose of this paper is to address entropy generation in flow of thixotropic nonlinear radiative nanoliquid over a variable stretching surface with impacts of inclined magnetic field, Joule heating, viscous dissipation, heat source/sink and chemical reaction. Characteristics of nanofluid are described by Brownian motion and thermophoresis effect. At surface of the sheet zero mass flux and convective boundary condition are considered. Design/methodology/approach Considered flow problem is mathematically modeled and the governing system of partial differential equations is transformed into ordinary ones by using suitable transformation. The transformed ordinary differential equations system is figure out by homotopy algorithm. Outcomes of pertinent flow variables on entropy generation, skin friction, concentration, temperature, velocity, Bejan, Sherwood and Nusselts numbers are examined in graphs. Major outcomes are concluded in final section. Findings Velocity profile increased versus higher estimation of material and wall thickness parameter while it decays through larger Hartmann number. Furthermore, skin friction coefficient upsurges subject to higher values of Hartmann number and magnitude of skin friction coefficient decays via materials parameters. Thermal field is an increasing function of Hartmann number, radiation parameter, thermophoresis parameter and Eckert number. Originality/value The authors have discussed entropy generation in flow of thixotropic nanofluid over a variable thicked surface. No such consideration is yet published in the literature.


Author(s):  
BJ Gireesha ◽  
CT Srinivasa ◽  
NS Shashikumar ◽  
Madhu Macha ◽  
JK Singh ◽  
...  

The combined effects of the magnetic field, suction/injection, and convective boundary condition on heat transfer and entropy generation in an electrically conducting Casson fluid flow through an inclined porous microchannel are scrutinized. The temperature-dependent heat source is also accounted. Numerical simulation for the modelled problem is presented via Runge–Kutta–Felhberg-based shooting technique. Special attention is given to analyze the impact of involved parameters on the profiles of velocity [Formula: see text], temperature [Formula: see text], entropy generation [Formula: see text], and Bejan number [Formula: see text]. It is established that entropy generation rate decreases at the walls with an increase in Hartmann number [Formula: see text], while it increases at the center region of the microchannel.


Author(s):  
Muhammad Khairul Anuar Mohamed ◽  
Siti Hanani Mat Yasin ◽  
Mohd Zuki Salleh ◽  
Hamzeh Taha Alkasasbeh

The present study investigated the magnetohydrodynamic (MHD) flow and heat transfer on a stagnation point past a stretching sheet in a blood-based Casson ferrofluid with Newtonian heating boundary conditions. The ferrite Fe3O4 and cobalt ferrite CoFe2O4 ferroparticles suspended into Casson fluid represent by human blood to form blood-based Casson ferrofluid are numerically examined. The mathematical model for Casson ferrofluid which is in non-linear partial differential equations are first transformed to a more convenient form by similarity transformation approach then solved numerically by using the Runge-Kutta-Fehlberg (RKF45) method. The characteristics and effects of the stretching parameter, the magnetic parameter, the Casson parameter and the ferroparticle volume fraction for Fe3O4 and CoFe2O4 on the variation of surface temperature and the reduced skin friction coefficient are analyzed and discussed. It is found that the blood-based Casson ferrofluid provided up to 46% higher in temperature surface compared to blood-based fluid with the presence of magnetic effects.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 102 ◽  
Author(s):  
Arshad Riaz ◽  
Muhammad Mubashir Bhatti ◽  
Rahmat Ellahi ◽  
Ahmed Zeeshan ◽  
Sadiq M. Sait

In this article, we discuss the entropy generation on the asymmetric peristaltic propulsion of non-Newtonian fluid with convective boundary conditions. The Williamson fluid model is considered for the analysis of flow properties. The current fluid model has the ability to reveal Newtonian and non-Newtonian behavior. The present model is formulated via momentum, entropy, and energy equations, under the approximation of small Reynolds number and long wavelength of the peristaltic wave. A regular perturbation scheme is employed to obtain the series solutions up to third-order approximation. All the leading parameters are discussed with the help of graphs for entropy and temperature profiles. The irreversibility process is also discussed with the help of Bejan number. Streamlines are plotted to examine the trapping phenomena. Results obtained provide an excellent benchmark for further study on the entropy production with mass transfer and peristaltic pumping mechanism.


2018 ◽  
Vol 80 (3) ◽  
Author(s):  
Imran Ullah ◽  
Sharidan Shafie ◽  
Ilyas Khan

The dissipative flow of Casson fluid in the presence of heat generation and absorption is investigated. The flow is induced due to stretching wedge. The similarity transformations were used to to transformed the governing equations into ordinary differential equations. The transformed equations are solved numerically via Keller-box method. Numerical results for skin friction coefficient are compared and found in excellent agreement with published results. The effects of pertinent parameters on velocity and temperature profiles as well as skin friction and heat transfer rate are graphically displayed and analyzed. It is noticed that fluid velocity drops with the increase of Casson fluid and magnetic parameters when the wedge is stretching faster than free stream. It is also noted that the heat transfer rate at wedge surface reduces with the increase of Eckert number, whereas the reverse trend is noted in the case of Casson and radiation parameters. Moreover, with increasing of heat generation or absorption parameter the fluid temperature rises.


Author(s):  
Odelu Ojjela ◽  
Kesetti Ramesh ◽  
Samir K. Das

AbstractThe present article deals the entropy generation due to heat and mass transfer of an unsteady MHD flow of a Casson fluid squeezed between two parallel disks. The upper disk is taken to be impermeable and the lower one is porous. The flow field equations are reduced to non-linear ordinary differential equations by using similarity transformations and the resulting ODE problem is solved by shooting technique with Runge-Kutta 4thorder method. The effects of various non dimensional fluid and geometric parameters on the velocity components, temperature, concentration, entropy generation number, Bejan number, skin friction and Nusselt number are illustrated through graphs and tables. It is noticed that the temperature of the fluid is enhanced with Eckert number, whereas the concentration of the fluid decreased with Casson fluid parameter. The present study is applicable to nuclear engineering cooling systems, wire and blade coating, extrusion of polymer fluids, optical fibers, magnetohydrodynamics and optimization of chemical engineering processes.


Sign in / Sign up

Export Citation Format

Share Document