Experimental study on the effect of air throttling on supersonic combustion

Author(s):  
Ye Tian ◽  
Shunhua Yang ◽  
Baoguo Xiao ◽  
Jialing Le

The effect of air throttling on supersonic combustion was investigated by experiments in the present paper. Our results indicated that, in the non-reacting flow, a shock train could be generated in the scramjet combustor due to the increased backpressure caused by air throttling, and the wall pressure increased obviously. But when the mass flux rate of air throttling was not large enough, the shock train would oscillate with the flow. In the reacting flow, the flame stabilization was achieved in the combustor without air throttling when the equivalence ratio of kerosene was 0.2 and 0.31, but the flame was blown off when the equivalence ratio of kerosene was 0.45. On the contrary, the kerosene (equivalence ratio: 0.45) was ignited successfully in the combustor with air throttling, and it kept burning all the time in the cases with air throttling −5% (the flux of air throttling was 5% of the inflow flux) and with air throttling −14% (the flux of air throttling was 14% of the inflow flux), but the flame was blown off in the case with air throttling −1.1% after kerosene had burnt 70 ms. The flux of air throttling should be large enough to achieve flame stabilization, and the hydrogen and air throttling should both exist all the time in order to keep the flame burning steadily.

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 193 ◽  
Author(s):  
Eunju Jeong ◽  
Sean O’Byrne ◽  
In-Seuck Jeung ◽  
A. F. P. Houwing

Supersonic combustion experiments were performed using three different hydrogen fuel-injection configurations in a cavity-based model scramjet combustor with various global fuel–air equivalence ratios. The configurations tested were angled injection at 15° to the flow direction upstream of the cavity, parallel injection from the front step, and upstream injection from the rear ramp. Planar laser-induced fluorescence of the hydroxyl radical and time-resolved pressure measurements were used to investigate the flow characteristics. Angled injection generated a weak bow shock in front of the injector and recirculation zone to maintain the combustion as the equivalence ratio increased. Parallel and upstream injections both showed similar flame structure over the cavity at low equivalence ratio. Upstream injection enhanced the fuel diffusion and enabled ignition with a shorter delay length than with parallel injection. The presence of a flame near the cavity was determined while varying the fuel injection location, the equivalence ratio, and total enthalpy of the air flow. The flame characteristics agreed with the correlation plot for the stable flame limit of non-premixed conditions. The pressure increase in the cavity for reacting flow compared to non-reacting flow was almost identical for all three configurations. More than 300 mm downstream of the duct entrance, averaged pressure ratios at low global equivalence ratio were similar for all three injection configurations.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ye Tian ◽  
Shunhua Yang ◽  
Jialing Le

The effect of air throttling on flame stabilization of an ethylene fueled scramjet combustor was investigated by numerical simulation and experiments in this paper. The results were obtained under the inflow condition with Mach number of 2.0, total temperature of 900 K, total pressure of 0.8 MPa, and total equivalence ratio of 0.5. The shock train generated by air throttling had a big effect on the flow structure of the scramjet combustor. Compared with the combustor without air throttling, the flow field with air throttling had a lower velocity and higher pressure, temperature, and vortices intensity. Air throttling was an effective way to achieve flame stabilization; the combustion in the combustor without air throttling was nearly blowout. In the experiment, the combustion was nearly blowout with air throttling location of 745 mm, and the fuel/air mixture in the combustor with air throttling location of 875 mm was burned intensively. It was important to choose the location and time sequence of air throttling for fuel ignition and flame stabilization. The numerical simulation results agreed well with experimental measurements.


2013 ◽  
Vol 722 ◽  
pp. 85-120 ◽  
Author(s):  
S. J. Laurence ◽  
S. Karl ◽  
J. Martinez Schramm ◽  
K. Hannemann

AbstractAn experimental and numerical investigation of the unsteady phenomena induced in a hydrogen-fuelled scramjet combustor under high-equivalence-ratio conditions is carried out, focusing on the processes leading up to unstart. The configuration for the study is the fuelled flow path of the HyShot II flight experiment. Experiments are performed in the HEG reflected-shock wind tunnel, and results are compared with those obtained from unsteady numerical simulations. High-speed schlieren and OH∗ chemiluminescence visualization, together with time-resolved surface pressure measurements, allow links to be drawn between the experimentally observed flow and combustion features. The transient flow structures signalling the onset of unstart are observed to take the form of an upstream-propagating shock train. Both the speed of propagation and the downstream location at which the shock train originates depend strongly on the equivalence ratio. The physical nature of the incipient shock system, however, appears to be similar for different equivalence ratios. Both experiments and computations indicate that the primary mechanism responsible for the transient behaviour is thermal choking, though localized boundary-layer separation is observed to accompany the shock system as it moves upstream. In the numerical simulations, the global choking behaviour is dictated by the limited region of maximum heat release around the shear layer between the injected hydrogen and the incoming air flow. This leads to the idea of ‘local’ thermal choking and results in a lower choking limit than is predicted by a simple integral analysis. Such localized choking makes it possible for new quasi-steady flow topologies to arise, and these are observed in both experiments and simulation. Finally, a quasi-unsteady one-dimensional analytical model is proposed to explain elements of the shock-propagation behaviour.


2014 ◽  
Vol 555 ◽  
pp. 18-25 ◽  
Author(s):  
Krishna Murari Pandey ◽  
Sukanta Roga

This paper presents the supersonic combustion of hydrogen using strut injector along with two-dimensional turbulent non-premixed combustion model with air inlet temperature of 750 0k and vitiated Mach number of 2. In this process, a PDF approach is created and this method needs solution to a high dimensional PDF transport equation. As the combustion of hydrogen fuel is injected from the strut injector, it is successfully used to model the turbulent reacting flow field. It is observed from the present work that, the maximum temperature of 2096 0k occurred in the recirculation area which is produced due to shock wave-expansion and the fuel jet losses concentration and after passing successively through such areas, temperature decreased slightly along the axis. From the maximum mass fraction of OH, it is observed that there is very little amount of OH around 0.0017 were found out after combustion. By providing strut injector, expansion wave is created which causes the proper mixing between the fuel and air that results in complete combustion.


2019 ◽  
Vol 157 ◽  
pp. 282-293 ◽  
Author(s):  
Yu-hang Wang ◽  
Wen-yan Song ◽  
De-yong Shi

Author(s):  
Malsur Dharavath ◽  
P. Manna ◽  
P. K. Sinha ◽  
Debasis Chakraborty

A kerosene-fueled scramjet combustor was numerically analyzed in order to meet the requirement of thrust for a hypersonic test vehicle. The internal configuration of the fuel injection struts and fuel injection was arrived through computational fluid dynamics (CFD) study. The combustor was tested in the hypersonic test facility at DRDL. Numerical simulations were carried out along with facility nozzle (from throat onward) both for nonreacting and reacting flow. Three-dimensional (3D) Reynolds-averaged Navier–Stokes (RANS) equations are solved along with k–ε turbulence model. Single-step chemical reaction with Lagrangian particle tracking method (LPTM) is used for combustion of kerosene fuel. Fairly good match of the top wall pressure has been obtained with experimental data for both nonreacting and reacting flows. Effects of mass flow rate of incoming vitiated air and fuel flow have been studied numerically in details. Top wall pressure distributions have been found to decrease with the decrease of the mass flow rate of vitiated air. Significant drop of wall pressure, higher thrust per unit fuel flow, and combustion efficiency have been observed with the decrease of fuel flow.


Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120239
Author(s):  
Guiqian Jiao ◽  
Wenyan Song ◽  
Qiang Fu ◽  
Jianping Li ◽  
Pinxin Wu

Sign in / Sign up

Export Citation Format

Share Document