Numerical simulation of parafoil inflation via a Robin–Neumann transmission-based approach

Author(s):  
Shuai Nie ◽  
Yihua Cao ◽  
Zhenlong Wu

In this paper, a partitioned coupled iterative approach based on the Robin–Neumann transmission condition is proposed for the fluid–structure interaction simulation of the inflation process of a parafoil. The Reynold-averaged Navier–Stokes equations and the versatile finite element method are employed to solve the fluid flow field and the structural deformation, respectively. The generalized-α time integration scheme for the structure and the second order back Euler scheme for the fluid are incorporated in the Robin-Neumann method. A modified spring-transfinite interpolation hybrid method is exploited to detect the deformation of the grid and regenerate the grid for the fluid architecture. Both a two-dimensional case and a three-dimensional case are studied to examine the feasibility of the present approach. The simulation results reveal the evolution of the flow regime during the inflation process when the air pours into the parafoil. The whole inflation process can be concluded as two stages: the span-wise deployment and the longitudinal expansion. The numerical aerodynamic performance agrees well with that obtained by wind-tunnel experiment, suggesting the effectiveness of this method in handling such a highly nonlinear fluid–structure interaction in parachute inflation.

Author(s):  
Fande Kong ◽  
Xiao-Chuan Cai

Fluid-structure interaction (FSI) problems are computationally very challenging. In this paper we consider the monolithic approach for solving the fully coupled FSI problem. Most existing techniques, such as multigrid methods, do not work well for the coupled system since the system consists of elliptic, parabolic and hyperbolic components all together. Other approaches based on direct solvers do not scale to large numbers of processors. In this paper, we introduce a multilevel unstructured mesh Schwarz preconditioned Newton–Krylov method for the implicitly discretized, fully coupled system of partial differential equations consisting of incompressible Navier–Stokes equations for the fluid flows and the linear elasticity equation for the structure. Several meshes are required to make the solution algorithm scalable. This includes a fine mesh to guarantee the solution accuracy, and a few isogeometric coarse meshes to speed up the convergence. Special attention is paid when constructing and partitioning the preconditioning meshes so that the communication cost is minimized when the number of processor cores is large. We show numerically that the proposed algorithm is highly scalable in terms of the number of iterations and the total compute time on a supercomputer with more than 10,000 processor cores for monolithically coupled three-dimensional FSI problems with hundreds of millions of unknowns.


Author(s):  
E. Longatte ◽  
Z. Bendjeddou ◽  
V. Verreman ◽  
M. Souli

In multi-physics numerical computations a good choice of code coupling schemes is required. Several methods are possible like: an explicit synchronous scheme an Euler implicit method and no interpolation on velocity pressure; an explicit asynchonous scheme using a Crank-Nicholson time integration scheme and interpolation on velocity and pressure; an implicit scheme using a fixed iterative method. In the present paper these different schemes are compared for application in fluid structure interaction field. In the first part numerical coupling schemes are presented. Then their capability to ensure energy conservation is discussed according to numerical results obtained in analytical test cases. Finally application of coupling process to fluid structure interaction problems is investigated and results are discussed in terms of added mass and damping induced by a fluid for a structure vibrating in fluid at rest.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 94 ◽  
Author(s):  
Cornel Marius Murea

A monolithic semi-implicit method is presented for three-dimensional simulation of fluid–structure interaction problems. The updated Lagrangian framework is used for the structure modeled by linear elasticity equation and, for the fluid governed by the Navier–Stokes equations, we employ the Arbitrary Lagrangian Eulerian method. We use a global mesh for the fluid–structure domain where the fluid–structure interface is an interior boundary. The continuity of velocity at the interface is automatically satisfied by using globally continuous finite element for the velocity in the fluid–structure mesh. The method is fast because we solve only a linear system at each time step. Three-dimensional numerical tests are presented.


2015 ◽  
Vol 18 (4) ◽  
pp. 1147-1180 ◽  
Author(s):  
David Kamensky ◽  
John A. Evans ◽  
Ming-Chen Hsu

AbstractThe purpose of this study is to enhance the stability properties of our recently-developed numerical method [D. Kamensky, M.-C. Hsu, D. Schillinger, J.A. Evans, A. Aggarwal, Y. Bazilevs, M.S. Sacks, T.J.R. Hughes, “An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves”, Comput. Methods Appl. Mech. Engrg., 284 (2015) 1005–1053] for immersing spline-based representations of shell structures into unsteady viscous incompressible flows. In the cited work, we formulated the fluid-structure interaction (FSI) problem using an augmented Lagrangian to enforce kinematic constraints. We discretized this Lagrangian as a set of collocated constraints, at quadrature points of the surface integration rule for the immersed interface. Because the density of quadrature points is not controlled relative to the fluid discretization, the resulting semi-discrete problem may be over-constrained. Semi-implicit time integration circumvents this difficulty in the fully-discrete scheme. If this time-stepping algorithm is applied to fluid-structure systems that approach steady solutions, though, we find that spatially-oscillating modes of the Lagrange multiplier field can grow over time. In the present work, we stabilize the semi-implicit integration scheme to prevent potential divergence of the multiplier field as time goes to infinity. This stabilized time integration may also be applied in pseudo-time within each time step, giving rise to a fully implicit solution method. We discuss the theoretical implications of this stabilization scheme for several simplified model problems, then demonstrate its practical efficacy through numerical examples.


Author(s):  
Esmatullah Maiwand Sharify ◽  
Norio Arai ◽  
Shun Takahashi

This contribution presents the numerical study of Fluid Structure Interaction (FSI) problems and discusses the oscillatory characteristics of the elastic bodies and flowfield around circular cylinders. This paper deals with the motion of the elastic body and the flowfield using computational fluid dynamics (CFD) in two-dimensional and three-dimensional simulations. The governing equations are the continuity equation and incompressible Navier-Stokes equations. These equations are solved by MAC (Marker and cell) method by using Poisson equation for pressure component and momentum equations for velocity components. The convective terms of momentum equations are discretized by the third-order upwind Kawamura-Kuwahara scheme. All of the discretized equations are solved by the Successive over-relaxation (SOR) method. The equation of motion consists of mass-spring-damper system and it is solved by the 4th order Runge-Kutta method. The objective is to investigate the influence of the elastic surfaces with respect to the vibration characteristics of cylinders in unsteady flows. As a result, it is obtained that due to passive deformation of elastic surface for single cylinder the drag coefficient increases in both 2D and 3D cases. It is noticed that the effect of elastic surface in 2D case is stronger compared to 3D case. In the case of double cylinders, the elastic surface affects on vibration characteristics of upstream and downstream cylinders, and it is significant on downstream cylinder.


2019 ◽  
Vol 123 (1262) ◽  
pp. 484-506
Author(s):  
H. Cho ◽  
N. Lee ◽  
S.-J. Shin ◽  
S. Lee

ABSTRACTIn this study, an improved fluid–structure interaction (FSI) analysis method is developed for a flapping wing. A co-rotational (CR) shell element is developed for its structural analysis. Further, a relevant non-linear dynamic formulation is developed based on the CR framework. Three-dimensional preconditioned Navier–Stokes equations are employed for its fluid analysis. An implicit coupling scheme is employed to combine the structural and fluid analyses. An explicit investigation of a 3D plunging wing is conducted using this FSI analysis method. A further investigation of this plunging wing is performed in relation to its operating condition. In addition, the relation between the wing’s aerodynamic performance and plunging motion is investigated.


Perfusion ◽  
2021 ◽  
pp. 026765912199854
Author(s):  
Mohammad Javad Ghasemi Pour ◽  
Kamran Hassani ◽  
Morteza Khayat ◽  
Shahram Etemadi Haghighi

Background and objectives: Fluid structure interaction (FSI) is defined as interaction of the structures with contacting fluids. The aortic valve experiences the interaction with blood flow in systolic phase. In this study, we have tried to predict the hemodynamics of blood flow through a normal and stenotic aortic valve in two relaxation and exercise conditions using a three-dimensional FSI method. Methods: The aorta valve was modeled as a three-dimensional geometry including a normal model and two others with 25% and 50% stenosis. The geometry of the aortic valve was extracted from CT images and the models were generated by MMIMCS software and then they were implemented in ANSYS software. The pulsatile flow rate was used for all cases and the numerical simulations were conducted based on a time-dependent domain. Results: The obtained results including the velocity, pressure, and shear stress contours in different systolic time sequences were explained and discussed. The maximum blood flow velocity in relaxation phase was obtained 1.62 m/s (normal valve), 3.78 m/s (25% stenosed valve), and 4.73 m/s (50% stenosed valve). In exercise condition, the maximum velocities are 2.86, 4.32, and 5.42 m/s respectively. The maximum blood pressure in relaxation phase was calculated 111.45 mmHg (normal), 148.66 mmHg (25% stenosed), and 164.21 mmHg (50% stenosed). However, the calculated values in exercise situation were 129.57, 163.58, and 191.26 mmHg. The validation of the predicted results was also conducted using existing literature. Conclusions: We believe that such model are useful tools for biomechanical experts. The further studies should be done using experimental data and the data are implemented on the boundary conditions for better comparison of the results.


Sign in / Sign up

Export Citation Format

Share Document