Geomagnetic signal de-noising method based on improved empirical mode decomposition and morphological filtering

Author(s):  
Hongqi Zhai ◽  
Lihui Wang ◽  
Qingya Liu ◽  
Nan Qiao

To solve the problem that geomagnetic signals are susceptible to random noise and instantaneous pulse interference in geomagnetic navigation, a geomagnetic signal de-noising method based on improved empirical mode decomposition (IEMD) and morphological filtering (MF) is proposed. The instantaneous pulse interference is eliminated by designing different structural elements according to the characteristics of the pulse signal. The signal after filtering the instantaneous pulse interference is decomposed by EMD, and the intrinsic mode functions (IMFs) obtained from the decomposition are determined as two modes (i.e. noise IMFs and mixed IMFs) by the cross-correlation coefficient criterion. The noise IMFs are removed directly, and a normalized least means square filter (NLMS) is designed to remove noise from mixed IMFs, which can adaptively adjust the filtering parameters according to the noise level of different IMF components. The noise-reduced mixed IMFs and residual are reconstructed to obtain the final geomagnetic signal. Experiment results illustrate that the proposed MF-IEMD method can effectively achieve noise reduction. Comparing with the traditional EMD and MF-EMD de-noising methods, the root mean square errors(RMSE) decreased by 49.27% and 24.79%, respectively.

2017 ◽  
Vol 14 (4) ◽  
pp. 888-898 ◽  
Author(s):  
Wei Liu ◽  
Siyuan Cao ◽  
Zhiming Wang

Abstract We have proposed a new denoising method for the simultaneous noise reduction and preservation of seismic signals based on variational mode decomposition (VMD). VMD is a recently developed adaptive signal decomposition method and an advance in non-stationary signal analysis. It solves the mode-mixing and non-optimal reconstruction performance problems of empirical mode decomposition that have existed for a long time. By using VMD, a multi-component signal can be non-recursively decomposed into a series of quasi-orthogonal intrinsic mode functions (IMFs), each of which has a relatively local frequency range. Meanwhile, the signal will focus on a smaller number of obtained IMFs after decomposition, and thus the denoised result is able to be obtained by reconstructing these signal-dominant IMFs. Synthetic examples are given to demonstrate the effectiveness of the proposed approach and comparison is made with the complete ensemble empirical mode decomposition, which demonstrates that the VMD algorithm has lower computational cost and better random noise elimination performance. The application of on field seismic data further illustrates the superior performance of our method in both random noise attenuation and the recovery of seismic events.


2012 ◽  
Vol 518-523 ◽  
pp. 3887-3890 ◽  
Author(s):  
Wei Chen ◽  
Shang Xu Wang ◽  
Xiao Yu Chuai ◽  
Zhen Zhang

This paper presents a random noise reduction method based on ensemble empirical mode decomposition (EEMD) and wavelet threshold filtering. Firstly, we have conducted spectrum analysis and analyzed the frequency band range of effective signals and noise. Secondly, we make use of EEMD method on seismic signals to obtain intrinsic mode functions (IMFs) of each trace. Then, wavelet threshold noise reduction method is used on the high frequency IMFs of each trace to obtain new high frequency IMFs. Finally, reconstruct the desired signal by adding the new high frequency IMFs on the low frequency IMFs and the trend item together. When applying our method on synthetic seismic record and field data we can get good results.


2015 ◽  
Vol 22 (2) ◽  
pp. 157-166 ◽  
Author(s):  
D. P. Chambers

Abstract. The ability of empirical mode decomposition (EMD) to extract multi-decadal variability from sea level records is tested using three simulations: one based on a series of purely sinusoidal modes, one based on scaled climate indices of El Niño and the Pacific decadal oscillation (PDO), and the final one including a single month with an extreme sea level event. All simulations include random noise of similar variance to high-frequency variability in the San Francisco tide gauge record. The intrinsic mode functions (IMFs) computed using EMD were compared to the prescribed oscillations. In all cases, the longest-period modes are significantly distorted, with incorrect amplitudes and phases. This affects the estimated acceleration computed from the longest periodic IMF. In these simulations, the acceleration was underestimated in the case with purely sinusoidal modes, and overestimated by nearly 100% in the case with prescribed climate modes. Additionally, in all cases, extra low-frequency modes uncorrelated with the prescribed variability are found. These experiments suggest that using EMD to identify multi-decadal variability and accelerations in sea level records should be used with caution.


2014 ◽  
Vol 1 (2) ◽  
pp. 1833-1854 ◽  
Author(s):  
D. P. Chambers

Abstract. The ability of empirical mode decomposition (EMD) to extract multidecadal variability from sea level records is tested using three simulations: one based on a series of purely sinusoidal modes, one based on scaled climate indices of El Niño and the Pacific Decadal Oscillation (PDO), and the final one including a single month with an extreme sea level event. All simulations include random noise of similar variance to high-frequency variability in the San Francisco tide gauge record. The intrinsic mode functions (IMFs) computed using EMD were compared to the prescribed oscillations. In all cases, the longest-period modes are significantly distorted, with incorrect amplitudes and phases. This affects the estimated acceleration computed from the longest periodic IMF. In these simulations, the acceleration was underestimated in the case with purely sinusoidal modes, and overestimated by nearly 100% in the case with prescribed climate modes. Additionally, in all cases, extra low-frequency modes uncorrelated with the prescribed variability are found. These experiments suggest that using EMD to identify multidecadal variability and accelerations in sea level records should be used with caution.


Author(s):  
Tao Zhang ◽  
Xinhua Wang ◽  
Yingchun Chen ◽  
Zia Ullah ◽  
Yizhen Zhao

Non-contact geomagnetic anomaly detection, as one of passive non-destructive testing (NDT) techniques, can be used to locate pipeline defects, while its accuracy is affected by random noise and detection orientation. In order to extract effective geomagnetic anomaly signals of pipeline defects, a method based on empirical mode decomposition (EMD) and magnetic gradient tensor was studied. In order to filter random noise, EMD was performed to self-adaptively decompose magnetic field signals into a series of intrinsic mode functions (IMFs), and then Hurst exponent was implemented to exclude false modes; The calculation method of magnetic gradient tensor modulus (MGTM) was proposed to obtain precise defect locations according to tensor symmetry; Subsequently, the remote pipeline defect model was built based on the magnetic dipole theory, and the relationship between detection orientation and MGTM was discussed. The experimental results showed that the proposed method could realize high precision and reliable non-contact geomagnetic localization of pipeline defects.


Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. V81-V91 ◽  
Author(s):  
Yangkang Chen ◽  
Jitao Ma

Random noise attenuation always played an important role in seismic data processing. One of the most widely used methods for suppressing random noise was [Formula: see text] predictive filtering. When the subsurface structure becomes complex, this method suffered from higher prediction errors owing to the large number of different dip components that need to be predicted. We developed a novel denoising method termed [Formula: see text] empirical-mode decomposition (EMD) predictive filtering. This new scheme solved the problem that makes [Formula: see text] EMD ineffective with complex seismic data. Also, by making the prediction more precise, the new scheme removed the limitation of conventional [Formula: see text] predictive filtering when dealing with multidip seismic profiles. In this new method, we first applied EMD to each frequency slice in the [Formula: see text] domain and obtained several intrinsic mode functions (IMFs). Then, an autoregressive model was applied to the sum of the first few IMFs, which contained the high-dip-angle components, to predict the useful steeper events. Finally, the predicted events were added to the sum of the remaining IMFs. This process improved the prediction precision by using an EMD-based dip filter to reduce the dip components before [Formula: see text] predictive filtering. Synthetic and real data sets demonstrated the performance of our proposed method in preserving more useful energy.


Author(s):  
Du Wenliao ◽  
Guo Zhiqiang ◽  
Gong Xiaoyun ◽  
Xie Guizhong ◽  
Wang Liangwen ◽  
...  

A novel multifractal detrended fluctuation analysis based on improved empirical mode decomposition for the non-linear and non-stationary vibration signal of machinery is proposed. As the intrinsic mode functions selection and Kolmogorov–Smirnov test are utilized in the detrending procedure, the present approach is quite available for contaminated data sets. The intrinsic mode functions selection is employed to deal with the undesired intrinsic mode functions named pseudocomponents, and the two-sample Kolmogorov–Smirnov test works on each intrinsic mode function and Gaussian noise to detect the noise-like intrinsic mode functions. The proposed method is adaptive to the signal and weakens the effect of noise, which makes this approach work well for vibration signals collected from poor working conditions. We assess the performance of the proposed procedure through the classic multiplicative cascading process. For the pure simulation signal, our results agree with the theoretical results, and for the contaminated time series, the proposed method outperforms the traditional multifractal detrended fluctuation analysis methods. In addition, we analyze the vibration signals of rolling bearing with different fault types, and the presence of multifractality is confirmed.


2022 ◽  
Author(s):  
J.M. González-Sopeña

Abstract. In the last few years, wind power forecasting has established itself as an essential tool in the energy industry due to the increase of wind power penetration in the electric grid. This paper presents a wind power forecasting method based on ensemble empirical mode decomposition (EEMD) and deep learning. EEMD is employed to decompose wind power time series data into several intrinsic mode functions and a residual component. Afterwards, every intrinsic mode function is trained by means of a CNN-LSTM architecture. Finally, wind power forecast is obtained by adding the prediction of every component. Compared to the benchmark model, the proposed approach provides more accurate predictions for several time horizons. Furthermore, prediction intervals are modelled using quantile regression.


2019 ◽  
Vol 16 (1) ◽  
pp. 10-13 ◽  
Author(s):  
Zoltán Germán-Salló

Abstract This study explores the data-driven properties of the empirical mode decomposition (EMD) for signal denoising. EMD is an acknowledged procedure which has been widely used for non-stationary and nonlinear signal processing. The main idea of the EMD method is to decompose the analyzed signal into components without using expansion functions. This is a signal dependent representation and provides intrinsic mode functions (IMFs) as components. These are analyzed, through their Hurst exponent and if they are found being noisy components they will be partially or integrally eliminated. This study presents an EMD decomposition-based filtering procedure applied to test signals, the results are evaluated through signal to noise ratio (SNR) and mean square error (MSE). The obtained results are compared with discrete wavelet transform based filtering results.


2014 ◽  
Vol 31 (9) ◽  
pp. 1982-1994 ◽  
Author(s):  
Xiaoying Chen ◽  
Aiguo Song ◽  
Jianqing Li ◽  
Yimin Zhu ◽  
Xuejin Sun ◽  
...  

Abstract It is important to recognize the type of cloud for automatic observation by ground nephoscope. Although cloud shapes are protean, cloud textures are relatively stable and contain rich information. In this paper, a novel method is presented to extract the nephogram feature from the Hilbert spectrum of cloud images using bidimensional empirical mode decomposition (BEMD). Cloud images are first decomposed into several intrinsic mode functions (IMFs) of textural features through BEMD. The IMFs are converted from two- to one-dimensional format, and then the Hilbert–Huang transform is performed to obtain the Hilbert spectrum and the Hilbert marginal spectrum. It is shown that the Hilbert spectrum and the Hilbert marginal spectrum of different types of cloud textural images can be divided into three different frequency bands. A recognition rate of 87.5%–96.97% is achieved through random cloud image testing using this algorithm, indicating the efficiency of the proposed method for cloud nephogram.


Sign in / Sign up

Export Citation Format

Share Document