Attenuation of leakage flow using axially nonuniform tip clearance in high loading transonic compressor rotor

Author(s):  
Weiwei Cui ◽  
Fusong Liu ◽  
Xinglu Wang ◽  
Fei Yao

Several linearly nonuniform clearances have been designed to explore a novel strategy for attenuation of leakage flow in tip region of high loading transonic rotor and the effects of axially nonuniform clearance on detailed tip flow structure and stable operating range of rotor have been discussed as well. The results showed that the tip flow characteristic of rotor is affected mainly by the combined effects of two parts of low-velocity flow, which are produced by interaction of leakage flow with passage shock and boundary layer separation near suction side, respectively. However, the stall margin of rotor and isentropic efficiency near tip region is dominated significantly by the former part, and the local changes of size and shape of tip clearance have a large influence on it. Once the strength of leakage flow decreases due to clearance size variation, the boundary layer separation near suction side of blade tip worsens gradually and increases additional aerodynamic losses in passage. Both the mass flow rate and mixing losses of the tip leakage flow can be reduced due to a smaller size of clearance existing in front part of clearance of rotor with a linearly divergent clearance shape, and the area of low-velocity region near pressure side has reduced accordingly. By contrast, a linearly convergent shape of tip clearance can increase both the area of low-velocity region and the mixing loss of leakage flow as a result of a larger size of clearance existing over the front part of blade tip of rotor. Eventually, a divergent shape of tip clearance with a reasonable minimum size near leading edge of blade tip is preferred for transonic rotor in consideration of the benefit in stall margin improvement with nearly no penalty in efficiency.

Author(s):  
Qingjun Zhao ◽  
Weiwei Cui ◽  
Wei Zhao ◽  
Xiaorong Xiang ◽  
Jianzhong Xu

The tip winglet is employed to improve the flow stability of NASA Rotor 37. Two suction-side winglets with the maximum width of 0.25 and 0.5 times of the width of local blade tip section and two pressure-side winglets with the maximum width of 0.5 and 0.9 times of the width of local blade tip section are designed and evaluated by numerical analysis of 3-D flowfield. The results show a rough leakage channel with two static pressure peaks over blade tip is formed due to the existing of pressure side winglet, and it benefits to reduce the effective through-flow area and massflow rate of leakage flow. The blocking effect on leakage flow weakens in new rotor with suction side winglet and it brings out the dramatical increase of leakage massflow rate and additional losses in tip region of rotor. With the comprehensive effects produced by tip winglet on leakage flow, the low-velocity region concerned on the interaction of leakage flow with passage shock has been reduced obviously in rotor with pressure side winglet and it leads to an over 11% increase of stall margin of transonic rotor with no penalty of efficiency. On the contrary, the suction side winglet contributes to a significant deterioration of tip flow characteristics of rotor with full expanded leakage flow and a smaller stall margin with over 17% decrease.


Author(s):  
Hongwei Ma ◽  
Jun Zhang ◽  
Jinghui Zhang ◽  
Zhou Yuan

This paper presents an experimental investigation of effects of grooved tip clearances on the flow field of a compressor cascade. The tests were performed in a low-speed large-scale cascade respectively with two tip clearance configurations, including flat tip and grooved tip with a chordwise channel on the blade top. The flow field at 10% chord downstream from the cascade trailing edge was measured at four incidence angles using a mini five-hole pressure probe. The static pressure distribution was measured on the tip endwall. The results show that the pressure gradient from the pressure side to the suction side on the blade tip is reduced due to the existence of the channel. As a result, the leakage flow is weakened. The high-blockage and high-loss region caused by the leakage flow is narrower with the grooved tip. In the meantime, the leakage flow migrates to lower spanwise position. The combined result is that the flow capacity in the tip region is improved at the incidence angles of 0° and 5° with the grooved tip. However, the loss is slightly greater than that with the flat tip at all the incidence angles.


Author(s):  
Hao Sun ◽  
Jun Li ◽  
Zhenping Feng

The clearance between the rotor blade tip and casing wall in turbomachinery passages induces leakage flow loss and thus degrades aerodynamic performance of the machine. The flow field in turbomachinery is significantly influenced by the rotor blade tip clearance size. To investigate the effects of tip clearance size on the rotor-stator interaction, the turbine stage profile from Matsunuma’s experimental tests was adopted, and the unsteady flow fields with two tip clearance sizes of 0.67% and 2.00% of blade span was numerical simulated based on Harmonic method using NUMECA software. By comparing with the domain scaling method, the accuracy of the harmonic method was verified. The interaction mechanism between the stator wake and the leakage flow was investigated. It is found that the recirculation induced by the stator wake is separated by a significant “interaction line” from the flow field close to the suction side in the clearance region. The trend of the pressure fluctuation is contrary on both sides of the line. When the stator wakes pass by the suction side, the pressure field fluctuates and the intensity of the tip leakage flow varies. With the clearance size increasing, the “interaction line” is more far away from the suction side and the intensity of tip leakage flow also fluctuates more strongly.


2014 ◽  
Vol 599-601 ◽  
pp. 368-371
Author(s):  
Zhi Hui Xu ◽  
He Bin Lv ◽  
Ru Bin Zhao

Using blade tip winglet to control the tip leakage flow has been concerned in the field of turbomachinery. Computational simulation was conducted to investigate the phenomenological features of tip clearance flow. The simulation results show that suction-side winglet can reduce leakage flow intensity. The tip winglet can also decrease tip leakage mass flow and weaken tip leakage flow mixing with the mainstream and therefore reduce the total pressure loss at the blade tip.


Author(s):  
Yasunori Sakuma ◽  
Toshinori Watanabe ◽  
Takehiro Himeno

Computational analysis has been conducted on the NASA Rotor 37 transonic compressor with various tip clearance gap heights. Using steady rotor-only analysis, the change in overall performance, basic flow characteristics, and near-casing phenomena have been carefully observed. The results have clarified that the peak efficiency of the compressor decreases almost linearly with the increase in gap height. Meanwhile, the stall margin was prone to deterioration in cases of significantly small or significantly large clearance gaps. The peak stall margin was attained when the gap was set to 75% of the original height. Focusing on the flow structures, the tip leakage flow and tip leakage vortex seemed to be dominant loss sources in the case of a large tip clearance gap. On the other hand, trailing edge separation at the blade tip was the major loss source in case of a small tip clearance gap. The difference in the near-casing flow structure also determined the onset process of numerical instability. In case of a large tip clearance gap, the advance of the interface between the main flow and tip leakage flow seemed to cause an accumulation of blockage in the region near the casing, possibly triggering the tip-initiated stall. In the case of a small tip clearance gap, interaction among the wall separation, blade tip trailing edge separation, and shockwave /boundary layer interaction was significant. These phenomena appeared to play a major role in the onset of numerical instability in the blade tip region.


Author(s):  
K. Kusterer ◽  
N. Moritz ◽  
D. Bohn ◽  
T. Sugimoto ◽  
R. Tanaka

Secondary flows and leakage flows lead to complex vortex structures in the flow field inside the passages of the vanes and blades in turbo machines. These result in aerodynamic losses and, thus, reduced efficiency. One of the major vortex structures is the tip clearance vortex, which is generated on the airfoil’s suction side due to the leakage flow through the tip clearance, e.g. between rotating blades and casing. This leakage flow is induced by the pressure difference between pressure and suction side. The tip clearance vortex intensity strongly depends on the amount of tip clearance leakage. Thus, the reduction of this leakage mass flow increases the aerodynamic efficiency of a turbo-machine. In gas turbines, two ways are commonly used to influence the tip leakage flow: contouring of the radial gap either at blade tip or endwall, or changing the blade tip geometry by application of squealers or winglets on the blade tip. In this paper, a numerical investigation on the principle physics of a specific blade tip design is presented. On the pressure side the blades are extended in the tip region comparable to winglets (“hook-shaped”). With this change, the structures of the flow entering the gap between blade tip and casing are influenced to achieve a reduction of the mass flow in the radial gap. In this approach, the contour of the blade on the pressure side surface is shaped smoothly so that only a low increase of the local stresses should be expected and the blade is manufactured in one part. Furthermore, the height of the tip clearance is not affected. The new blade tip design is applied to 2nd and 3rd blade of the axial turbine in a test configuration of a KHI industrial gas turbine. Thus, a multi-stage numerical approach has been selected for the numerical investigation. The numerical model includes the flow path, vanes and blades of the 2nd and 3rd stage. The mixing plane technique is used to couple the blocks computed in stationary system of reference and rotating system of reference. The aerodynamic efficiency of the new designed blade tip in the two-stage arrangement is compared to the original design. It shows that a slight increase can be achieved in the static polytropic efficiency of the turbine configuration. The influence of the new design on the flow structures in the tip clearance region of the blades is analysed in detail to explain the mechanisms that cause the efficiency increase.


Author(s):  
Lihua Cao ◽  
Heyong Si ◽  
Jiaxin Wang ◽  
Pan Li

To avoid friction, a clearance between the rotor blade tip and the cylinder is needed in a steam turbine. As a result, the leakage flow is formed under the pressure difference which mixes with the main flow and causes the mixing loss. So, a numerical calculation was conducted based on a high-pressure 1.5-stage steam turbine with the tip labyrinth seal. The leakage vortex system and the mixing progress at different tip clearances were analyzed. The related leakage losses were calculated. The results show that the leakage flow will lead to the steam deflecting at the rotor exit and cause incidence loss. Furthermore, in the downstream stator, the leakage flow near the suction side with high radial velocity causes the deflection of the outflow angles. The main influence region of leakage flow is distributed above 75% of blade height, whereas the most intense region is distributed at approximately 95% of blade height. It is found that the mixing loss is related to the size of the backflow vortex. The related leakage losses increase with tip clearance, in which the mixing loss is the major part and the mass-averaged entropy mixing loss coefficient is 7–11%.


Author(s):  
Carsten Stockhaus ◽  
Werner Volgmann ◽  
Horst Stoff

The purpose of this paper is to investigate numerically the tip leakage flow for different blade tip geometries in an axial compressor stage under design and off-design conditions. Using flat tips, suction and pressure side squealers in combination with knife tips, a comparison of the rotor performance in terms of pressure and efficiency gain is reported. Detailed flow characteristics within the tip clearance gap, interaction of the leakage flow with the main flow and resultant turning effects at the exit of the row have been investigated. The CFD method is based on a commercially available compressible Navier-Stokes solver (STAR-CD), using a turbulent compressible high Reynolds number k-ε model. Accurate numerical comparison of different blade tip geometries is achieved by using the same grid for the various shapes. The blocking strategy with O-grid structure is presented. The numerical results show clearly the beneficial effect of cutting away material from the pressure side. The higher surface curvature of the suction side squealer affects the pressure blade loading and increases the lift in the same way. This effect is increased by increasing the squealer height and results in a lower efficiency gain near the surge line. The best modification of the blade tip shows a maximum reduction of the tip discharge coefficient of 20 %. This leads to an improved total pressure ratio of 0.29% and an improved total polytropic efficiency of 0.40% under design condition. The influences of favourable squealer geometries on stage characteristics are described along an operating line. With a simulation of IGV-setting from Δα = −15° to Δα = +20° different operating points have been investigated in a swirl performance map. The beneficial effect of the suction side squealer found for the rotor row could assign to the stator row and results in an improved static pressure gain. Furthermore, design indications are presented which help to keep the efficiency gain under surge condition as high as possible.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Hongwei Ma ◽  
Jun Zhang ◽  
Jinghui Zhang ◽  
Zhou Yuan

This paper presents an experimental investigation of effects of grooved tip clearances on the flow field of a compressor cascade. The tests were performed in a low-speed large-scale cascade, respectively, with two tip-clearance configurations, including the flat tip and the grooved tip with a chordwise channel on the blade top. The flow field at 10% chord downstream from the cascade trailing edge was measured at four incidence angles using a mini five-hole pressure probe. The static pressure distribution was measured on the tip endwall. The results show that the pressure gradient from the pressure side to the suction side on the blade tip is reduced due to the existence of the channel. As a result, the leakage flow is weakened. The high-blockage and high-loss region caused by the leakage flow is narrower with the grooved tip. In the meantime, the leakage flow migrates to lower span-wise position. The combined result is that the flow capacity in the tip region is improved at the incidence angles of 0 deg and 5 deg with the grooved tip. However, the loss is slightly greater than that with the flat tip at all the incidence angles.


Author(s):  
Weijie Wang ◽  
Shaopeng Lu ◽  
Hongmei Jiang ◽  
Qiusheng Deng ◽  
Jinfang Teng ◽  
...  

Numerical simulations are conducted to present the aerothermal performance of a turbine blade tip with cutback squealer rim. Two different tip clearance heights (0.5%, 1.0% of the blade span) and three different cavity depths (2.0%, 3.0%, and 6.0% of the blade span) are investigated. The results show that a high heat transfer coefficient (HTC) strip on the cavity floor appears near the suction side. It extends with the increase of tip clearance height and moves towards the suction side with the increase of cavity depth. The cutback region near the trailing edge has a high HTC value due to the flush of over-tip leakage flow. High HTC region shrinks to the trailing edge with the increase of cavity depth since there is more accumulated flow in the cavity for larger cavity depth. For small tip clearance cases, high HTC distribution appears on the pressure side rim. However, high HTC distribution is observed on suction side rim for large tip clearance height. This is mainly caused by the flow separation and reattachment on the squealer rims.


Sign in / Sign up

Export Citation Format

Share Document