Modeling of Blade Tip Geometries in an Axial Compressor Stage

Author(s):  
Carsten Stockhaus ◽  
Werner Volgmann ◽  
Horst Stoff

The purpose of this paper is to investigate numerically the tip leakage flow for different blade tip geometries in an axial compressor stage under design and off-design conditions. Using flat tips, suction and pressure side squealers in combination with knife tips, a comparison of the rotor performance in terms of pressure and efficiency gain is reported. Detailed flow characteristics within the tip clearance gap, interaction of the leakage flow with the main flow and resultant turning effects at the exit of the row have been investigated. The CFD method is based on a commercially available compressible Navier-Stokes solver (STAR-CD), using a turbulent compressible high Reynolds number k-ε model. Accurate numerical comparison of different blade tip geometries is achieved by using the same grid for the various shapes. The blocking strategy with O-grid structure is presented. The numerical results show clearly the beneficial effect of cutting away material from the pressure side. The higher surface curvature of the suction side squealer affects the pressure blade loading and increases the lift in the same way. This effect is increased by increasing the squealer height and results in a lower efficiency gain near the surge line. The best modification of the blade tip shows a maximum reduction of the tip discharge coefficient of 20 %. This leads to an improved total pressure ratio of 0.29% and an improved total polytropic efficiency of 0.40% under design condition. The influences of favourable squealer geometries on stage characteristics are described along an operating line. With a simulation of IGV-setting from Δα = −15° to Δα = +20° different operating points have been investigated in a swirl performance map. The beneficial effect of the suction side squealer found for the rotor row could assign to the stator row and results in an improved static pressure gain. Furthermore, design indications are presented which help to keep the efficiency gain under surge condition as high as possible.

Author(s):  
Hao Sun ◽  
Jun Li ◽  
Zhenping Feng

The clearance between the rotor blade tip and casing wall in turbomachinery passages induces leakage flow loss and thus degrades aerodynamic performance of the machine. The flow field in turbomachinery is significantly influenced by the rotor blade tip clearance size. To investigate the effects of tip clearance size on the rotor-stator interaction, the turbine stage profile from Matsunuma’s experimental tests was adopted, and the unsteady flow fields with two tip clearance sizes of 0.67% and 2.00% of blade span was numerical simulated based on Harmonic method using NUMECA software. By comparing with the domain scaling method, the accuracy of the harmonic method was verified. The interaction mechanism between the stator wake and the leakage flow was investigated. It is found that the recirculation induced by the stator wake is separated by a significant “interaction line” from the flow field close to the suction side in the clearance region. The trend of the pressure fluctuation is contrary on both sides of the line. When the stator wakes pass by the suction side, the pressure field fluctuates and the intensity of the tip leakage flow varies. With the clearance size increasing, the “interaction line” is more far away from the suction side and the intensity of tip leakage flow also fluctuates more strongly.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Nicolas Gourdain ◽  
Francis Leboeuf

This paper deals with the numerical simulation of technologies to increase the compressor performances. The objective is to extend the stable operating range of an axial compressor stage using passive control devices located in the tip region. First, the behavior of the tip leakage flow is investigated in the compressor without control. The simulation shows an increase in the interaction between the tip leakage flow and the main flow when the mass flow is reduced, a phenomenon responsible for the development of a large flow blockage region at the rotor leading edge. A separation of the rotor suction side boundary layer is also observed at near stall conditions. Then, two approaches are tested in order to control these flows in the tip region. The first one is a casing treatment with nonaxisymmetric slots. The method showed a good ability to control the tip leakage flow but failed to reduce the boundary layer separation on the suction side. However, an increase in the operability was observed but with a penalty for the efficiency. The second approach is a blade treatment that consists of a longitudinal groove built in the tip of each rotor blade. The simulation pointed out that the device is able to control partially all the critical flows with no penalty for the efficiency. Finally, some recommendations for the design of passive treatments are presented.


2014 ◽  
Vol 599-601 ◽  
pp. 368-371
Author(s):  
Zhi Hui Xu ◽  
He Bin Lv ◽  
Ru Bin Zhao

Using blade tip winglet to control the tip leakage flow has been concerned in the field of turbomachinery. Computational simulation was conducted to investigate the phenomenological features of tip clearance flow. The simulation results show that suction-side winglet can reduce leakage flow intensity. The tip winglet can also decrease tip leakage mass flow and weaken tip leakage flow mixing with the mainstream and therefore reduce the total pressure loss at the blade tip.


Author(s):  
Behnam H. Beheshti ◽  
Bijan Farhanieh ◽  
Kaveh Ghorbanian ◽  
Joao A. Teixeira ◽  
Paul C. Ivey

Improvements in sealing mechanism between the rotating and the stationary parts of a turbomachine can extensively reduce the endwall leakage flow. In this regard, abradable seals are incorporated into compressor and turbine blade-tip region. In a gas turbine, equipped with abradable seals, tip of the rotor blade is designed to cut into the material coating of the casing and to form a close fitted circumferential groove for the movement of the blade tip. As a result, the resistance to the leakage flow in the tip gap region increases due to smaller tip clearances (available without any rub-induced damages). Minimizing the tip clearance size can lead to an increase in performance and stability. This paper presents a numerical investigation of abradable coating as a means to seal the tip leakage flow in NASA Rotor 37, a transonic axial compressor rotor. In order to validate the multi block model used in the tip gap region, various flow characteristics are verified with the experimental data for smooth casing at a design clearance of 0.5% span. To have a better understanding of how an abradable seal affects the passage flow field, smooth casing and abradable coating are studied and results are compared for various models including two different incursion depth and width. Results indicate that the application of abradable coating in transonic axial compressors can efficiently improve the performance and stability.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Jin Wang ◽  
Bengt Sundén ◽  
Min Zeng ◽  
Qiu-wang Wang

Three-dimensional simulations of the squealer tip on the GE-E3 blade with eight film cooling holes were carried out. The effect of the rim width and the blowing ratio on the blade tip flow and cooling performance were revealed. Numerical simulations were performed to predict the leakage flow and the tip heat transfer with the k–ɛ model. For the squealer tip, the depth of the cavity is fixed but the rim width varies to form a wide cavity, which can decrease the coolant momentum and the tip leakage flow velocity. This cavity contributes to the improvement of the cooling effect in the tip zone. To investigate the influence on the tip heat transfer by the rim width, numerical simulations were performed as a two-part study: (1) unequal rim width study on the pressure side and the suction side and (2) equal rim width study with rim widths of 0.58%, 1.16%, and 1.74% of the axial chord (0.5 mm, 1 mm, and 1.5 mm, respectively) on both the pressure side rim and the suction side rim. With different rim widths, the effect of different global blowing ratios, i.e., M = 0.5, 1.0 and 1.5, was investigated. It is found that the total heat transfer rate is increasing and the heat transfer rates on the rim surface (RS) rapidly ascend with increasing rim width.


Author(s):  
K. Kusterer ◽  
N. Moritz ◽  
D. Bohn ◽  
T. Sugimoto ◽  
R. Tanaka

Secondary flows and leakage flows lead to complex vortex structures in the flow field inside the passages of the vanes and blades in turbo machines. These result in aerodynamic losses and, thus, reduced efficiency. One of the major vortex structures is the tip clearance vortex, which is generated on the airfoil’s suction side due to the leakage flow through the tip clearance, e.g. between rotating blades and casing. This leakage flow is induced by the pressure difference between pressure and suction side. The tip clearance vortex intensity strongly depends on the amount of tip clearance leakage. Thus, the reduction of this leakage mass flow increases the aerodynamic efficiency of a turbo-machine. In gas turbines, two ways are commonly used to influence the tip leakage flow: contouring of the radial gap either at blade tip or endwall, or changing the blade tip geometry by application of squealers or winglets on the blade tip. In this paper, a numerical investigation on the principle physics of a specific blade tip design is presented. On the pressure side the blades are extended in the tip region comparable to winglets (“hook-shaped”). With this change, the structures of the flow entering the gap between blade tip and casing are influenced to achieve a reduction of the mass flow in the radial gap. In this approach, the contour of the blade on the pressure side surface is shaped smoothly so that only a low increase of the local stresses should be expected and the blade is manufactured in one part. Furthermore, the height of the tip clearance is not affected. The new blade tip design is applied to 2nd and 3rd blade of the axial turbine in a test configuration of a KHI industrial gas turbine. Thus, a multi-stage numerical approach has been selected for the numerical investigation. The numerical model includes the flow path, vanes and blades of the 2nd and 3rd stage. The mixing plane technique is used to couple the blocks computed in stationary system of reference and rotating system of reference. The aerodynamic efficiency of the new designed blade tip in the two-stage arrangement is compared to the original design. It shows that a slight increase can be achieved in the static polytropic efficiency of the turbine configuration. The influence of the new design on the flow structures in the tip clearance region of the blades is analysed in detail to explain the mechanisms that cause the efficiency increase.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1445
Author(s):  
Moru Song ◽  
Hong Xie ◽  
Bo Yang ◽  
Shuyi Zhang

This paper studies the influence of tip clearance on the flow characteristics related to the performance. Based on full-passage numerical simulation with experimental validation, several clearance models are established and the performance curves are obtained. It is found that there exists an optimum clearance for the stable working range. By analyzing the flow field in tip region, the role of the tip leakage flow is illustrated. In the zero-clearance model, the separation and blockage along the suction side is the main reason for rotating stall. As the tip clearance is increased to the optimum value, the separation is suppressed by the tip leakage flow. However, with the continuing increasing of the tip clearance, the scale and strength of the tip clearance vortex is increased correspondingly. When the tip clearance is larger than the optimum value, the tip clearance vortex gradually dominates the flow field in the tip region, which can increase the unsteadiness in the tip region and trigger forward spillage in stall onset.


1992 ◽  
Vol 114 (3) ◽  
pp. 668-674 ◽  
Author(s):  
I. N. Moyle ◽  
G. J. Walker ◽  
R. P. Shreeve

This paper describes the effect of tip clearance changes on the pressure at the case wall of a second-stage rotor. Wall shear distributions under the rotor tip are also presented. The results show low-pressure areas extending along the rotor suction side but lying away from the blade. Pressure contours indicate the tangential loading at the tip is lower than predicted by two-dimensional calculations; however, the predicted loading is observed between the lowest pressure’s path in the passage and the blade pressure side. The results suggest that a viscous or shearing layer, due to blade-to-wall relative motion, is generated on the blade side of the tip gap, which modifies the inviscid relative flow field and produces an unloading on the blade tip.


Author(s):  
Haohao Wang ◽  
Lei Zhao ◽  
Limin Gao ◽  
Yongzeng Li ◽  
Chi Ma

Abstract This paper deals with the numerical simulation of a passive control technology to increase the performance of the first rotor in a counter-rotating axial compressor. The objective is to extend the stable operating range of an axial compressor rotor using blade tip fillet structure that located on the blade tip pressure side. Firstly, the behavior of the tip leakage flow is investigated for the compressor rotor without passive treatment. The simulations show the loading of blade tip increases as the mass flow rate decreases, which pushed the location of tip leakage vortex and tip separation vortex forward to leading edge. A blockage in the rotor blade passage is also observed at near stall conditions. Then, a rotor blade tip fillet structure (TFS) is tested in order to control leakage flow in the tip region. Steady calculations were conducted to investigate the impact of TFS on the performance of the compressor rotor. The results show that TFS could extend the operating range with no penalty for efficiency when the fillet structure located on the blade tip pressure side. The flow control mechanisms of tip leakage flow are that TFS has a good ability to weaken the tip separation vortex and make the tip leakage vortex closer to the blade suction surface compared to origin rotor blade. It is founded that TFS may lead to a increase of leakage flow mass rate near tip clearance region that resulted in the addition of mixing loss. It is significant to obtain a balance between the benefits of weakening the tip separation vortex and the damage of mixing loss.


1991 ◽  
Author(s):  
I. N. Moyle ◽  
G. J. Walker ◽  
R. P. Shreeve

This paper describes the effect of tip clearance changes on the pressure at the case wall of a second stage rotor. Wall shear distributions under the rotor tip are also presented. The results show low pressure areas extending along the rotor suction side but lying away from the blade. Pressure contours indicate the tangential loading at the tip is lower than predicted by two dimensional calculations, however, the predicted loading is observed between the lowest pressure’s path in the passage and the blade pressure side. The results suggest a viscous or shearing layer, due to blade-to-wall relative motion, is generated on the blade side of the tip gap which modifies the inviscid relative flow field and produces an unloading on the blade tip.


Sign in / Sign up

Export Citation Format

Share Document