Experimental study on the aerodynamic influence of purge flow in a turbine cascade with different mainstream incidence angles

Author(s):  
Zhao Lianpeng ◽  
Ma Hongwei

Demand for high reliability and long life of modern turbine requires that turbine components should be cooled adequately. The cooling flow purged into the rotor-stator disk cavity will inevitably interact with the mainstream. The current paper mainly focuses on the aerodynamic influence of cooling flow on the secondary flows in the mainstream. Both particle image velocimetry and blade wall pressure measurement were utilized to study the flow field within the turbine blade passage under different mainstream incidence angles and purge flow rates. The purge flow was found to promote the development of the passage vortex by inducing vortices which can enhance the vorticity of the passage vortex. In addition, the mainstream incidence angle also has an impact on the development of the passage vortex through affecting the blade loading and the horseshoe vortex. Furthermore, the transient results demonstrate that the time-averaged vortex is the superposition of large number of transient vortices, and the purge flow causes more transient vortices with large size and high strength.

2021 ◽  
Vol 143 (4) ◽  
Author(s):  
A. J. Carvalho Figueiredo ◽  
B. D. J. Schreiner ◽  
A. W. Mesny ◽  
O. J. Pountney ◽  
J. A. Scobie ◽  
...  

Abstract Air-cooled gas turbines employ bleed air from the compressor to cool vulnerable components in the turbine. The cooling flow, commonly known as purge air, is introduced at low radius, before exiting through the rim-seal at the periphery of the turbine discs. The purge flow interacts with the mainstream gas path, creating an unsteady and complex flowfield. Of particular interest to the designer is the effect of purge on the secondary-flow structures within the blade passage, the extent of which directly affects the aerodynamic loss in the stage. This paper presents a combined experimental and computational fluid dynamics (CFD) investigation into the effect of purge flow on the secondary flows in the blade passage of an optically accessible one-stage turbine rig. The experimental campaign was conducted using volumetric velocimetry (VV) measurements to assess the three-dimensional inter-blade velocity field; the complementary CFD campaign was carried out using unsteady Reynolds-averaged Navier–Stokes (URANS) computations. The implementation of VV within a rotating environment is a world first and offers an unparalleled level of experimental detail. The baseline flow-field, in the absence of purge flow, demonstrated a classical secondary flow-field: the rollup of a horseshoe vortex, with subsequent downstream convection of a pressure-side and suction-side leg, the former transitioning in to the passage vortex. The introduction of purge, at 1.7% of the mainstream flowrate, was shown to modify the secondary flow-field by enhancing the passage vortex, in both strength and span-wise migration. The computational predictions were in agreement with the enhancement revealed by the experiments.


Author(s):  
J. T. Chung ◽  
T. W. Simon ◽  
J. Buddhavarapu

A flow management technique designed to reduce some harmful effects of secondary flow in the endwall region of a turbine passage is introduced. A boundary layer fence in the gas turbine passage is shown to improve the likelihood of efficient film cooling on the suction surface near the endwall. The fence prevents the pressure side leg of the horseshoe vortex from crossing to the suction surface and impinging on the wall. The vortex is weakened and decreased in size after being deflected by the fence. Such diversion of the vortex will prevent it from removing the film cooling flow allowing the flow to perform its cooling function. Flow visualization on the suction surface and through the passage shows the behavior of the passage vortex with and without the fence. Laser Doppler velocimetry is employed to quantify these observations.


2021 ◽  
Author(s):  
Alex W. Mesny ◽  
Mark A. Glozier ◽  
Oliver J. Pountney ◽  
James A. Scobie ◽  
Yan Sheng Li ◽  
...  

Abstract The use of purge flow in gas turbines allows for high turbine entry temperatures, which are essential to produce high cycle efficiency. Purge air is bled from the compressor and reintroduced in the turbine to cool vulnerable components. Wheel-spaces are formed between adjacent rotating and stationary discs, with purge air supplied at low radius before exiting into the mainstream gas-path through a rim-seal at the disc periphery. An aerodynamic penalty is incurred as the purge flow egress interacts with the mainstream. This study presents unparalleled three-dimensional velocity data from a single-stage turbine test rig, specifically designed to investigate egress-mainstream interaction using optical measurement techniques. Volumetric Velocimetry is applied to the rotating environment with phase-locked measurements used to identify and track the vortical secondary flow features through the blade passage. A baseline case without purge flow is compared to experiments with a 1.7% purge mass fraction; the latter was chosen to ensure a fully sealed wheel-space. A non-localised vortex tracking function is applied to the data to identify the position of the core centroids. The strength of the secondary-flow vortices was determined by using a circulation criterion on rotated planes aligned to the vortex filaments. The pressure-side leg of the horseshoe vortex and a second vortex associated with the egress flow were identified by the experimental campaign. In the absence of purge flow the two vortices merged, forming the passage vortex. With the addition of purge flow, the two cores remained independent to 40% of the blade axial chord, while also demonstrating an increased radial migration and intensification of the passage vortex. The egress core was shown to remain closer to the suction-surface with purge flow. Importantly, where the vortex filaments demonstrated strong radial or tangential components of velocity, the circulation level calculated from axial planes underpredicted the true circulation by up to 50%.


Author(s):  
A. J. Carvalho Figueiredo ◽  
B. D. J. Schreiner ◽  
A. W. Mesny ◽  
O. J. Pountney ◽  
J. A. Scobie ◽  
...  

Abstract Air-cooled gas turbines employ bleed air from the compressor to cool vulnerable components in the turbine. The cooling flow, commonly known as purge air, is introduced at low radius, before exiting through the rim-seal at the periphery of the turbine discs. The purge flow interacts with the mainstream gas path, creating an unsteady and complex flow-field. Of particular interest to the designer is the effect of purge on the secondary flow structures within the blade passage, the extent of which directly affects the aerodynamic loss in the stage. This paper presents a combined experimental and Computational Fluid Dynamics (CFD) investigation into the effect of purge flow on the secondary flows in the blade passage of an optically-accessible 1-stage turbine rig. The experimental campaign was conducted using Volumetric Velocimetry (VV) measurements to assess the three-dimensional inter-blade velocity field; the complementary CFD campaign was carried out using URANS computations. The implementation of VV within a rotating environment is a world first and offers an unparalleled level of experimental detail. The baseline flow-field, in the absence of purge flow, demonstrated a classical secondary flow-field: the roll-up of a horseshoe-vortex, with subsequent downstream convection of a pressure-side and suction-side leg, the former transitioning in to the passage vortex. The introduction of purge, at 1.7% of the mainstream flow-rate, was shown to modify the secondary flow field by enhancing the passage vortex, both in strength and span-wise migration. The computational predictions were in agreement with the enhancement revealed by the experiments.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
B. D. J Schreiner ◽  
M. Wilson ◽  
Y. S. Li ◽  
C. M. Sangan

Abstract Turbine disc cooling is required to protect vulnerable components from exposure to the high temperatures found in the mainstream gas path. Purge air, bled from the latter stages of the compressor, is introduced to the turbine wheelspace at low radius before exiting through the rim-seal at the periphery of the discs. The unsteady, complex flowfield that arises from the interaction between the purge and mainstream gases modifies the structure of secondary flows within the blade passage. A computational study was conducted using an unsteady Reynolds-averaged Navir–Stokes (RANS) solver, modeling an engine-representative turbine stage. Preliminary results were validated using experimental data from a test rig. The baseline secondary flowfield was described, in the absence of purge flow, demonstrating the classical rollup of the horseshoe vortex and subsequent convection of the two legs downstream. The unsteady behavior of the model was investigated and addressed, resulting in recommendations for modeling interaction phenomena in turbines. A superposed purge flow, resulting in egress through the upstream rim-seal, was shown to modify the secondary flowfield in the turbine annulus. The most notable effect of egress was the formation of a large plume forming near the pressure minima associated with the blade suction surface. The egress was turned by the mainstream flow, creating a vortical structure consistent in rotational direction to the pressure-side leg of the horseshoe vortex; the pressure-side leg was subsequently strengthened and showed an increased radial migration relative to the unpurged case. The egress plume was also shown to overwhelm the suction-side leg of the horseshoe vortex, reducing its strength.


2006 ◽  
Vol 129 (3) ◽  
pp. 253-262 ◽  
Author(s):  
G. I. Mahmood ◽  
S. Acharya

Velocity and pressure measurements are presented for a blade passage with and without leading edge contouring in a low speed linear cascade. The contouring is achieved through fillets placed at the junction of the leading edge and the endwall. Two fillet shapes, one with a linear streamwise cross-section (fillet 1) and the other with a parabolic cross-section (fillet 2), are examined. Measurements are taken at a constant Reynolds number of 233,000 based on the blade chord and the inlet velocity. Data presented at different axial planes include the pressure loss coefficient, axial vorticity, velocity vectors, and yaw and pitch angles. In the early stages of the development of the secondary flows, the fillets are seen to reduce the size and strength of the suction-side leg of the horseshoe vortex with associated reductions in the pressure loss coefficients and pitch angles. Further downstream, the total pressure loss coefficients and vorticity show that the fillets lift the passage vortex higher above the endwall and move it closer to the suction side in the passage. Near the trailing edge of the passage, the size and strength of the passage vortex is smaller with the fillets, and the corresponding reductions in pressure loss coefficients extend beyond the mid-span of the blade. While both fillets reduce pressure loss coefficients and vorticity, fillet 1 (linear fillet profile) appears to exhibit greater reductions in pressure loss coefficients and pitch angles.


Author(s):  
Thorsten Poehler ◽  
Jochen Gier ◽  
Peter Jeschke

Numerical and experimental investigations have been performed to determine the effects of non-axisymmetric stator endwall contouring on the efficiency of an axial turbine stage. The influences of the contoured endwalls on the secondary flows in the stator and the rotor have been analyzed by conducting steady and unsteady RANS simulations as well as measurements in the 1.5-stage axial cold air turbine test rig of the Institute of Jet Propulsion and Turbomachinery. Both numerical and experimental results show an aerodynamic improvement of efficiency and secondary kinetic energy through non-axisymmetric endwall contouring. The non-axisymmetric endwall contour induces a vortex, which separates the pressure side leg of the horseshoe vortex from the passage vortex resulting in redistributed and reduced secondary flows. The modified secondary flow pattern increases the torque of the rotor blade in the hub region as a consequence of improved inlet conditions for the rotor as well as a reduction of the time interval the secondary flows are convected through the rotor passage within. Concerning the shroud region the endwall contour had no significant impact on the efficiency as a consequence of a dominating tip clearance vortex system.


Author(s):  
J. Cui ◽  
P. G. Tucker

The secondary flow increases the loss and changes the flow incidence in the downstream blade row. To prevent hot gases from entering disk cavities, purge flows are injected into the mainstream in a real aero-engine. The interaction between purge flows and the mainstream usually induces aerodynamic losses. The endwall loss is also affected by shedding wakes and secondary flow from upstream rows. Using a series of eddy-resolving simulations, this paper aims to improve the understanding of the interaction between purge flows, incoming secondary flows along with shedding wakes and mainstream flows on the endwall within a stator passage. It is found that for a blade with an aspect ratio of 2.2, a purge flow with a 1% leakage rate increases loss generation within the blade passage by around 10%. The incoming wakes and secondary flows increase the loss generation further by around 20%. The purge flow pushes the passage vortex further away from the endwall and increases the exit flow angle deviation. However, the maximum exit flow angle deviation is reduced after introducing incoming wakes and secondary flows. The loss generation rate is calculated using the mean flow kinetic energy equation. Two regions with high loss generation rate are identified within the blade passage: the corner region and the region where passage vortex interacts with the boundary layer on the suction surface. Loss generation rate increases dramatically after the separated boundary layer transitions. Since the endwall flow energizes the boundary layer and triggers earlier transition on the suction surface, the loss generation rate close to the endwall at the trailing edge is suppressed.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Jiahuan Cui ◽  
Paul Tucker

The secondary flow increases the loss and changes the flow incidence in the downstream blade row. To prevent hot gases from entering disk cavities, purge flows are injected into the mainstream in a real aero-engine. The interaction between purge flows and the mainstream usually induces aerodynamic losses. The endwall loss is also affected by shedding wakes and secondary flow from upstream rows. Using a series of eddy-resolving simulations, this paper aims to improve the understanding of the interaction between purge flows, incoming secondary flows along with shedding wakes, and mainstream flows on the endwall within a stator passage. It is found that for a blade with an aspect ratio of 2.2, a purge flow with a 1% leakage rate increases loss generation within the blade passage by around 10%. The incoming wakes and secondary flows increase the loss generation further by around 20%. The purge flow pushes the passage vortex further away from the endwall and increases the exit flow angle deviation. However, the maximum exit flow angle deviation is reduced after introducing incoming wakes and secondary flows. The loss generation rate is calculated using the mean flow kinetic energy equation. Two regions with high loss generation rate are identified within the blade passage: the corner region and the region where passage vortex interacts with the boundary layer on the suction surface. Loss generation rate increases dramatically after the separated boundary layer transitions. Since the endwall flow energizes the boundary layer and triggers earlier transition on the suction surface, the loss generation rate close to the endwall at the trailing edge (TE) is suppressed.


Author(s):  
Sayuri D. Yapa ◽  
Christopher J. Elkins ◽  
John K. Eaton

Turbine vane cascades produce strong secondary flows due to flow turning. The dominant flow feature is the passage vortex, located in the corner between the endwall and the suction surface of the airfoil. Full-field, 3D velocity and concentration measurements were made using magnetic resonance imaging to study turbulent mixing in a realistic film-cooled nozzle vane cascade. The passage vortex has large effects on the flow features in the vane wake and consequently, on coolant mixing. Cross-flow vorticity on the vane’s suction side rolls up and forms the suction-side leg of the horseshoe vortex, which then interacts with the cross-flow boundary layer and rolls up into the passage vortex. The passage vortex does not measurably increase the turbulent diffusivity, although it does strongly distort streamlines near the endwall.


Sign in / Sign up

Export Citation Format

Share Document