scholarly journals The speed, reflection and intensity of waves propagating in flexible tubes with aneurysm and stenosis: Experimental investigation

Author(s):  
Wisam S Hacham ◽  
Ashraf W Khir

A localized stenosis or aneurysm is a discontinuity that presents the pulse wave produced by the contracting heart with a reflection site. However, neither wave speed ( c) in these discontinuities nor the size of reflection in relation to the size of the discontinuity has been adequately studied before. Therefore, the aim of this work is to study the propagation of waves traversing flexible tubes in the presence of aneurysm and stenosis in vitro. We manufactured different sized four stenosis and four aneurysm silicone sections, connected one at a time to a flexible ‘mother’ tube, at the inlet of which a single semi-sinusoidal wave was generated. Pressure and velocity were measured simultaneously 25 cm downstream the inlet of the respective mother tube. The wave speed was measured using the PU-loop method in the mother tube and within each discontinuity using the foot-to-foot technique. The stenosis and aneurysm dimensions and c were used to determine the reflection coefficient ( R) at each discontinuity. Wave intensity analysis was used to determine the size of the reflected wave. The reflection coefficient increased with the increase and decrease in the size of the aneurysm and stenosis, respectively. c increased and decreased within stenosis and aneurysms, respectively, compared to that of the mother tube. Stenosis and aneurysm induced backward compression and expansion waves, respectively; the size of which was related to the size of the reflection coefficient at each discontinuity, increases with smaller stenosis and larger aneurysms. Wave speed is inversely proportional to the size of the discontinuity, exponentially increases with smaller stenosis and aneurysms and always higher in the stenosis. The size of the compression and expansion reflected wave depends on the size of R, increases with larger aneurysms and smaller stenosis.

1967 ◽  
Vol 30 (2) ◽  
pp. 385-402 ◽  
Author(s):  
L. F. Henderson

The paper deals with the regular refraction of a plane shock at a gas interface for the particular case where the reflected wave is an expansion fan. Numerical results are presented for the air–CH4 and air–CO2 gas combinations which are respectively examples of ‘slow–fast’ and ‘fast–slow’ refractions. It is found that a previously unreported condition exists in which the reflected wave solutions may be multi-valued. The hodograph mapping theory predicts a new type of regular–irregular transition for a refraction in this condition. The continuous expansion wave type of irregular refraction is also examined. The existence of this wave system is found to depend on the flow being self-similar. By contrast the expansion wave becomes centred when the flow becomes steady. Transitions within the ordered set of regular solutions are examined and it is shown that they may be either continuous or discontinuous. The continuous types appear to be associated with fixed boundaries and the discontinuous types with movable boundaries. Finally, a number of almost linear relations between the wave strengths are noted.


Author(s):  
Dilong Guo ◽  
Wen Liu ◽  
Junhao Song ◽  
Ye Zhang ◽  
Guowei Yang

The aerodynamic force acting on the pantograph by the airflow is obviously unsteady and has a certain vibration frequency and amplitude, while the high-speed train passes through the tunnel. In addition to the unsteady behavior in the open-air operation, the compressive and expansion waves in the tunnel will be generated due to the influence of the blocking ratio. The propagation of the compression and expansion waves in the tunnel will affect the pantograph pressure distribution and cause the pantograph stress state to change significantly, which affects the current characteristics of the pantograph. In this paper, the aerodynamic force of the pantograph is studied with the method of the IDDES combined with overset grid technique when high speed train passes through the tunnel. The results show that the aerodynamic force of the pantograph is subjected to violent oscillations when the pantograph passes through the tunnel, especially at the entrance of the tunnel, the exit of the tunnel and the expansion wave passing through the pantograph. The changes of the pantograph aerodynamic force can reach a maximum amplitude of 106%. When high-speed trains pass through tunnels at different speeds, the aerodynamic coefficients of the pantographs are roughly the same.


2021 ◽  
Vol 63 ◽  
pp. 342-358
Author(s):  
Jasobanta Jena ◽  
Sheena Mittal

We investigate the interaction between a singular surface and a strong shock in the self-gravitating interstellar gas clouds with the assumption of spherical symmetry. Using the method of the Lie group of transformations, a particular solution of the flow variables and the cooling–heating function for an infinitely strong shock is obtained. This paper explores an application of the singular surface theory in the evolution of an acceleration wave front propagating through an unperturbed medium. We discuss the formation of an acceleration, considering the cases of compression and expansion waves. The influence of the cooling–heating function on a shock formation is explained. The results of a collision between a strong shock and an acceleration wave are discussed using the Lax evolutionary conditions.   doi:10.1017/S1446181121000328


2001 ◽  
Vol 101 (6) ◽  
pp. 749-757 ◽  
Author(s):  
Ashraf W. KHIR ◽  
Michael Y. HENEIN ◽  
Tat KOH ◽  
Saroj K. DAS ◽  
Kim H. PARKER ◽  
...  

The purpose of this study was to investigate the effect of aortic clamping on arterial waves during peripheral vascular surgery. We measured pressure and velocity simultaneously in the ascending aorta, in ten patients (70±5 years) with aortic-iliac disease intra-operatively. Pressure was measured using a catheter tip manometer, and velocity was measured using Doppler ultrasound. Data were collected before aortic clamping, during aortic clamping and after unclamping. Hydraulic work in the aortic root was calculated from the measured data, the reflected waves were determined by wave-intensity analysis and wave speed was determined by the PU-loop (pressure-velocity-loop) method; a new technique based on the ‘water-hammer’ equation. The wave speed is approx. 32% (P < 0.05) higher during clamping than before clamping. Although the peak intensity of the reflected wave does not alter with clamping, it arrives 30ms (P < 0.05) earlier and its duration is 25% (P < 0.05) longer than before clamping. During clamping, left ventricule (LV) hydraulic systolic work and the energy carried by the reflected wave increased by 27% (P < 0.05) and 20% (P < 0.05) respectively, compared with before clamping. The higher wave speed during clamping explains the earlier arrival of the reflected waves suggesting an increase in the afterload, since the LV has to overcome earlier reflected compression waves. The longer duration of the reflected wave during clamping is associated with an increase in the total energy carried by the wave, which causes an increase in hydraulic work. Increased hydraulic work during clamping may increase LV oxygen consumption, provoke myocardial ischaemia and hence contribute to the intra-operative impairment of LV function known in patients with peripheral vascular disease.


Circulation ◽  
1990 ◽  
Vol 82 (1) ◽  
pp. 114-123 ◽  
Author(s):  
S E Greenwald ◽  
A C Carter ◽  
C L Berry

2011 ◽  
Vol 130 (1) ◽  
pp. 585-598 ◽  
Author(s):  
Kui Lin ◽  
Joyce R. McLaughlin ◽  
Ashley Thomas ◽  
Kevin Parker ◽  
Benjamin Castaneda ◽  
...  

Geophysics ◽  
1990 ◽  
Vol 55 (9) ◽  
pp. 1223-1234 ◽  
Author(s):  
C. G. M. de Bruin ◽  
C. P. A. Wapenaar ◽  
A. J. Berkhout

Most present day seismic migration schemes determine only the zero‐offset reflection coefficient for each grid point (depth point) in the subsurface. In matrix notation, the zero‐offset reflection coefficient is found on the diagonal of a reflectivity matrix operator that transforms the illuminating source‐wave field into a reflected‐wave field. However, angle dependent reflectivity information is contained in the full reflectivity matrix. Our objective is to obtain angle‐dependent reflection coefficients from seismic data by means of prestack migration (multisource, multioffset). After downward extrapolation of source and reflected wave fields to one depth level, the rows of the reflectivity matrix (representing angle‐dependent reflectivity information for each grid point at that depth level) are recovered by deconvolving the reflected wave fields with the related source wave fields. This process is carried out in the space‐frequency domain. In order to preserve the angle‐dependent reflectivity in the imaging we must not only add all frequency contributions but we should extend the imaging principle by adding along lines of constant angle in the wavenumber‐frequency domain. This procedure is carried out for each grid point. The resulting amplitude information provides a rigorous approach to amplitude‐versus‐offset related methods. The new imaging technique has been tested on media with horizontal layers. However, with our shot‐record oriented algorithm it is possible to handle any subsurface geometry. The first tests show excellent results up to high angles, both in the acoustic and in the elastic case. With angle‐dependent reflectivity information it becomes feasible to derive detailed velocity and density information in a subsequent stratigraphic inversion step.


2021 ◽  
Vol 11 (20) ◽  
pp. 9391
Author(s):  
Emma Harris ◽  
Ruchi Sinnatamby ◽  
Elizabeth O’Flynn ◽  
Anna M. Kirby ◽  
Jeffrey C. Bamber

Quantitative measures of radiation-induced breast stiffness are required to support clinical studies of novel breast radiotherapy regimens and exploration of personalised therapy, however, variation between shear-wave elastography (SWE) machines may limit the usefulness of shear-wave speed (cs) for this purpose. Mean cs measured in four healthy volunteers’ breasts and a phantom using 2D-SWE machines Acuson S2000 (Siemens Medical Solutions) and Aixplorer (Supersonic Imagine) were compared. Shear-wave speed was measured in the skin region, subcutaneous adipose tissue and parenchyma. cs estimates were on average 2.3% greater when using the Aixplorer compared to S2000 in vitro. In vivo, cs estimates were on average 43.7%, 36.3% and 49.9% significantly greater (p << 0.01) when using the Aixplorer compared to S2000, for skin region, subcutaneous adipose tissue and parenchyma, respectively. In conclusion, despite relatively small differences between machines observed in vitro, large differences in absolute measures of shear wave speed measured were observed in vivo, which may prevent pooling of cross-machine data in clinical studies of the breast.


Sign in / Sign up

Export Citation Format

Share Document