Force modeling to develop a novel method for fabrication of hollow channels inside a gel structure

Author(s):  
Ranjit Barua ◽  
Himanshu Giria ◽  
Sudipto Datta ◽  
Amit Roy Chowdhury ◽  
Pallab Datta

Fabrication of hollow channels with user-defined dimensions and patterns inside viscoelastic, gel-type materials is required for several applications, especially in biomedical engineering domain. These include objectives of obtaining vascularized tissues and enclosed or subsurface microfluidic devices. However, presently there is no suitable manufacturing technology that can create such channels and networks in a gel structure. The advent of three-dimensional bioprinting has opened new possibilities for fabricating structures with complex geometries. However, application of this technique to fabricate internal hollow channels in viscoelastic material has not been yet explored to a great extent. In this article, we present the theoretical modeling/background of a proposed manufacturing paradigm through which hollow channels can be conveniently fabricated inside a gel structure. We propose that a tip connected to a robotic arm can be moved in X-, Y-, and Z-axis as per the desired design. The tip can be moved by a magnet or mechanical force. If the tip is further trailed with porous tube and moved inside the viscoelastic material, corresponding internal channels can be fabricated. To achieve this, however, force modeling to understand the forces that will be required to move the tip inside viscoelastic material should be known and understood. Therefore, in our first attempt, we developed the computational force modeling of the tip movement inside gels with different viscoelastic properties to create the channels.

2021 ◽  
Vol 11 (8) ◽  
pp. 3404
Author(s):  
Majid Hejazian ◽  
Eugeniu Balaur ◽  
Brian Abbey

Microfluidic devices which integrate both rapid mixing and liquid jetting for sample delivery are an emerging solution for studying molecular dynamics via X-ray diffraction. Here we use finite element modelling to investigate the efficiency and time-resolution achievable using microfluidic mixers within the parameter range required for producing stable liquid jets. Three-dimensional simulations, validated by experimental data, are used to determine the velocity and concentration distribution within these devices. The results show that by adopting a serpentine geometry, it is possible to induce chaotic mixing, which effectively reduces the time required to achieve a homogeneous mixture for sample delivery. Further, we investigate the effect of flow rate and the mixer microchannel size on the mixing efficiency and minimum time required for complete mixing of the two solutions whilst maintaining a stable jet. In general, we find that the smaller the cross-sectional area of the mixer microchannel, the shorter the time needed to achieve homogeneous mixing for a given flow rate. The results of these simulations will form the basis for optimised designs enabling the study of molecular dynamics occurring on millisecond timescales using integrated mix-and-inject microfluidic devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kiyoshi Masuyama ◽  
Tomoaki Higo ◽  
Jong-Kook Lee ◽  
Ryohei Matsuura ◽  
Ian Jones ◽  
...  

AbstractIn contrast to hypertrophic cardiomyopathy, there has been reported no specific pattern of cardiomyocyte array in dilated cardiomyopathy (DCM), partially because lack of alignment assessment in a three-dimensional (3D) manner. Here we have established a novel method to evaluate cardiomyocyte alignment in 3D using intravital heart imaging and demonstrated homogeneous alignment in DCM mice. Whilst cardiomyocytes of control mice changed their alignment by every layer in 3D and position twistedly even in a single layer, termed myocyte twist, cardiomyocytes of DCM mice aligned homogeneously both in two-dimensional (2D) and in 3D and lost myocyte twist. Manipulation of cultured cardiomyocyte toward homogeneously aligned increased their contractility, suggesting that homogeneous alignment in DCM mice is due to a sort of alignment remodelling as a way to compensate cardiac dysfunction. Our findings provide the first intravital evidence of cardiomyocyte alignment and will bring new insights into understanding the mechanism of heart failure.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jin Yeong Song ◽  
Hyun Il Ryu ◽  
Jeong Myeong Lee ◽  
Seong Hwan Bae ◽  
Jae Woo Lee ◽  
...  

AbstractElectrospinning is a common and versatile process to produce nanofibers and deposit them on a collector as a two-dimensional nanofiber mat or a three-dimensional (3D) macroscopic arrangement. However, 3D electroconductive collectors with complex geometries, including protruded, curved, and recessed regions, generally caused hampering of a conformal deposition and incomplete covering of electrospun nanofibers. In this study, we suggested a conformal fabrication of an electrospun nanofiber mat on a 3D ear cartilage-shaped hydrogel collector based on hydrogel-assisted electrospinning. To relieve the influence of the complex geometries, we flattened the protruded parts of the 3D ear cartilage-shaped hydrogel collector by exploiting the flexibility of the hydrogel. We found that the suggested fabrication technique could significantly decrease an unevenly focused electric field, caused by the complex geometries of the 3D collector, by alleviating the standard deviation by more than 70% through numerical simulation. Furthermore, it was experimentally confirmed that an electrospun nanofiber mat conformally covered the flattened hydrogel collector with a uniform thickness, which was not achieved with the original hydrogel collector. Given that this study established the conformal electrospinning technique on 3D electroconductive collectors, it will contribute to various studies related to electrospinning, including tissue engineering, drug/cell delivery, environmental filter, and clothing.


2021 ◽  
Vol 11 (9) ◽  
pp. 4047
Author(s):  
Marinos Xagoraris ◽  
Panagiota-Kyriaki Revelou ◽  
Eleftherios Alissandrakis ◽  
Petros A. Tarantilis ◽  
Christos S. Pappas

The standardization of the botanical origin of honey reflects the commercial value and quality of honey. Nowadays, most consumers are looking for a unifloral honey. The aim of the present study was to develop a novel method for honey classification using chemometric models based on phenolic compounds analyzed with right angle fluorescence spectroscopy, coupled with stepwise linear discriminant analysis (LDA). The deconstructed spectrum from three-dimensional-emission excitation matrix (3D-EEM) spectra provided a correct classification score of 94.9% calibration and cross-validation at an excitation wavelength (λex) of 330 nm. Subsequently, a score of 81.4% and 79.7%, respectively, at an excitation wavelength (λex) of 360 nm was achieved. Each chemometric model confirmed its power through the external validation with a score of 82.1% for both. Differentiation could be correlated with hydroxycinnamic and hydroxybenzoic acids, which absorb in this region of the spectrum. Fluorescence spectroscopy constitutes a rapid and sensitive technique, which, when combined with the stepwise algorithm and LDA method, can be used as a reliable and predictive authentication tool for honey. This study indicates that the developed methodology is a promising technique for determination of the botanical origin of common Greek honey varieties. Our long-term ambition is to support producers and suppliers to remain in a competitive national and international market.


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 164-181
Author(s):  
Joyita Sarkar ◽  
Swapnil C. Kamble ◽  
Nilambari C. Kashikar

Three-dimensional (3D) printing techniques have revolutionized the field of tissue engineering. This is especially favorable to construct intricate tissues such as liver, as 3D printing allows for the precise delivery of biomaterials, cells and bioactive molecules in complex geometries. Bioinks made of polymers, of both natural and synthetic origin, have been very beneficial to printing soft tissues such as liver. Using polymeric bioinks, 3D hepatic structures are printed with or without cells and biomolecules, and have been used for different tissue engineering applications. In this review, with the introduction to basic 3D printing techniques, we discuss different natural and synthetic polymers including decellularized matrices that have been employed for the 3D bioprinting of hepatic structures. Finally, we focus on recent advances in polymeric bioinks for 3D hepatic printing and their applications. The studies indicate that much work has been devoted to improvising the design, stability and longevity of the printed structures. Others focus on the printing of tissue engineered hepatic structures for applications in drug screening, regenerative medicine and disease models. More attention must now be diverted to developing personalized structures and stem cell differentiation to hepatic lineage.


Soft Matter ◽  
2021 ◽  
Author(s):  
S. I. Tamim ◽  
J. B. Bostwick

A soft cylindrical interface endowed with surface tension can be unstable to wavy undulations. The most unstable wavelength depends upon the viscoelastic properties of the material and is determined by a dynamic stability analysis.


2004 ◽  
Vol 92 (2) ◽  
pp. 1236-1240 ◽  
Author(s):  
P. Grigg ◽  
D. R. Robichaud ◽  
Z. Del Prete

When skin is stretched, stimuli experienced by a cutaneous mechanoreceptor neuron are transmitted to the nerve ending through the skin. In these experiments, we tested the hypothesis that the viscoelastic response of the skin influences the dynamic response of cutaneous rapidly adapting (RA) neurons. Cutaneous RA afferent neurons were recorded in 3 species of mice (Tsk, Pallid, and C57BL6) whose skin has different viscoelastic properties. Isolated samples of skin and nerve were stimulated mechanically with a dynamic stretch stimulus, which followed a pseudo Gaussian waveform with a bandwidth of 0–60 Hz. The mechanical response of the skin was measured as were responses of single RA cutaneous mechanoreceptor neurons. For each neuron, the strength of association between spike responses and the dynamic and static components of stimuli were determined with multiple logistic regression analysis. The viscoelastic material properties of each skin sample were determined indirectly, by creating a nonlinear (Wiener–Volterra) model of the stress–strain relationship, and using the model to predict the complex compliance (i.e., the viscoelastic material properties). The dynamic sensitivity of RA mechanoreceptor neurons in mouse hairy skin was weakly related to the viscoelastic properties of the skin. Loss modulus and phase angle were lower (indicating a decreased viscous component of response) in Tsk and Pallid than in C57BL6 mice. However, RA mechanoreceptor neurons in Tsk and Pallid skin did not differ from those in C57 skin with regard to their sensitivity to the rate of change of stress or to the rate of change of incremental strain energy. They did have a decreased sensitivity to the rate of change of tensile strain. Thus the skin samples with lower dynamic mechanical response contained neurons with a somewhat lower sensitivity to dynamic stimuli.


Sign in / Sign up

Export Citation Format

Share Document