scholarly journals In vitro and Animal Models for Antiviral Therapy in Papillomavirus Infections

1997 ◽  
Vol 8 (5) ◽  
pp. 381-400 ◽  
Author(s):  
MA Stanley ◽  
PJ Masterson ◽  
PK Nicholls

The need for antiviral therapies for papillomavirus infections is well recognized but the difficulties of reproducing the infectious cycle of papillomaviruses in vitro has hindered our understanding of virus-cell interactions and the regulation of viral gene expression during permissive growth. Recent advances in understanding the temporal expression and function of papillomavirus proteins has enabled consideration of a targeted approach to papillomavirus chemotherapy and in particular the inhibition of viral replication by targeting the E1 and E2 proteins. There are in vitro culture systems available for the screening of new chemotherapeutic agents, since significant advances have been made with culture systems which promote epithelial differentiation in vitro. However, to date, there are no published data which show that virions generated in vitro can infect keratinocytes and initiate another round of replication in vitro. In vivo animal models are therefore necessary to assess the efficacy of antivirals in preventing and treating viral infection, particularly for the low-risk genital viruses which are on the whole refractory to culture in vitro. Although papillomaviruses affect a wide variety of hosts in a species-specific manner, the animals most useful for modelling papillomavirus infections include the rabbit, ox, mouse, dog, horse, primate and sheep. The ideal animal model should be widely available, easy to house and handle, be large enough to allow for adequate tissue sampling, develop lesions on anatomical sites comparable with those in human diseases and these lesions should be readily accessible for monitoring and ideally should yield large amounts of infectious virus particles for use in both in vivo and in vitro studies. The relative merits of the various papillomavirus animal models available in relation to these criteria are discussed.

2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 3040-3040 ◽  
Author(s):  
H. K. Hariharan ◽  
T. Murphy ◽  
D. Clanton ◽  
L. Berquist ◽  
P. Chu ◽  
...  

3040 Background: Galiximab, a primatized monoclonal antibody that binds with high affinity to CD80 and mediates antibody- dependent, cell-mediated cytotoxicity in vitro, is currently under investigation for the treatment of follicular non-Hodgkin’s lymphoma (NHL). In a phase I/II monotherapy study, galiximab produced an overall response rate of 11%, and tumor reductions were observed in 46% of patients. Initial clinical trials also demonstrate that galiximab is well tolerated and suggest that combining galiximab with rituximab (anti-CD20) provides clinical benefit. These results are consistent with preclinical studies in murine lymphoma xenograft model systems, which demonstrate the superiority of combination therapy. Methods: To further define the therapeutic potential of galiximab, the Raji subcutaneous and the SKW disseminated lymphoma murine xenograft models were used to define the in vivo efficacy of galiximab alone or in combination with fludarabine or doxorubicin. Similar studies were performed with rituximab. Results: In the Raji model, both galiximab and rituximab exhibited maximal inhibition of the growth of preestablished (150-mg) tumors at a dose of 3 mg/kg/wk. Interestingly, higher doses of galiximab (but not rituximab) showed reduced inhibition. Galiximab (3 mg/kg/wk) inhibited tumor growth alone (P<0.0001 vs. control) and showed significantly enhanced activity when combined with fludarabine (50 or 100 mg/kg daily for 5 days; P<0.0002 vs. galiximab alone and P<0.003 vs. fludarabine alone). Similar results were observed with rituximab. In the SKW model, treatment with galiximab (5 mg/kg/wk for 6 doses) significantly enhanced survival compared with a control (P<0.0001) or doxorubicin (2.5 mg/kg/day for 3 doses; P<0.0001). Studies combining fludarabine or doxorubicin with both galiximab and rituximab are ongoing. Conclusions: Studies in animal models of lymphoma indicate that galiximab may provide clinical benefit when used in combination with chemotherapeutic agents such as fludarabine and doxorubicin, and provide a rationale for the investigation of these novel chemoimmunotherapy combinations in clinical trials. No significant financial relationships to disclose.


Blood ◽  
2007 ◽  
Vol 110 (10) ◽  
pp. 3722-3728 ◽  
Author(s):  
Agnès Lezin ◽  
Nicolas Gillet ◽  
Stéphane Olindo ◽  
Aïssatou Signaté ◽  
Nathalie Grandvaux ◽  
...  

AbstractEpigenetic modifications of chromatin may play a role in maintaining viral latency and thus persistence of the human T-lymphotropic virus type 1 (HTLV-1), which is responsible for HTLV-associated myelopathy/tropical spastic paraparesis (HAM/TSP). A major determinant of disease progression is increased peripheral blood proviral load (PVL), possibly via the accumulation of infected cells in the central nervous system (CNS) creating a damaging inflammatory response. Current therapeutic approaches that focus on reducing either cell proliferation, viral replication, or tissue invasion are still unsatisfactory. Contrasting with these inhibitory strategies, we evaluated the efficacy of a novel approach aimed, paradoxically, at activating viral gene expression to expose virus-positive cells to the host immune response. We used valproate (VPA), a histone deacetylase inhibitor that has been used for decades as a chronic, safe treatment for epileptic disorders. Based on in vitro and in vivo data, we provide evidence that transient activation of the latent viral reservoir causes its collapse, a process that may alleviate the condition of HAM/TSP. This represents the first such approach to treating HAM/TSP, using gene activation therapy to tilt the host-pathogen balance in favor of an existing antiviral response. This trial is registered at http://clinicaltrials.gov/as no. NCT00519181.


Author(s):  
Hongyu Li ◽  
Lixiong Gao ◽  
Jinlin Du ◽  
Tianju Ma ◽  
Zi Ye ◽  
...  

The genomic profile of animal models is not completely matched with the genomic profile of humans, and 2D cultures do not represent the cellular heterogeneity and tissue architecture found in tissues of their origin. Derived from 3D culture systems, organoids establish a crucial bridge between 2D cell cultures and in vivo animal models. Organoids have wide and promising applications in developmental research, disease modeling, drug screening, precision therapy, and regenerative medicine. However, current organoids represent only single or partial components of a tissue, which lack blood vessels, native microenvironment, communication with near tissues, and a continuous dorsal-ventral axis within 3D culture systems. Although efforts have been made to solve these problems, unfortunately, there is no ideal method. Teratoma, which has been frequently studied in pathological conditions, was recently discovered as a new in vivo model for developmental studies. In contrast to organoids, teratomas have vascularized 3D structures and regions of complex tissue-like organization. Studies have demonstrated that teratomas can be used to mimic multilineage human development, enrich specific somatic progenitor/stem cells, and even generate brain organoids. These results provide unique opportunities to promote our understanding of the vascularization and maturation of organoids. In this review, we first summarize the basic characteristics, applications, and limitations of both organoids and teratomas and further discuss the possibility that in vivo teratoma systems can be used to promote the vascularization and maturation of organoids within an in vitro 3D culture system.


2019 ◽  
Vol 295 (6) ◽  
pp. 1704-1715 ◽  
Author(s):  
Mari Numata ◽  
James R. Mitchell ◽  
Jennifer L. Tipper ◽  
Jeffrey D. Brand ◽  
John E. Trombley ◽  
...  

The influenza A (H1N1)pdm09 outbreak in 2009 exemplified the problems accompanying the emergence of novel influenza A virus (IAV) strains and their unanticipated virulence in populations with no pre-existing immunity. Neuraminidase inhibitors (NAIs) are currently the drugs of choice for intervention against IAV outbreaks, but there are concerns that NAI-resistant viruses can transmit to high-risk populations. These issues highlight the need for new approaches that address the annual influenza burden. In this study, we examined whether palmitoyl-oleoyl-phosphatidylglycerol (POPG) and phosphatidylinositol (PI) effectively antagonize (H1N1)pdm09 infection. POPG and PI markedly suppressed cytopathic effects and attenuated viral gene expression in (H1N1)pdm09-infected Madin-Darby canine kidney cells. POPG and PI bound to (H1N1)pdm09 with high affinity and disrupted viral spread from infected to noninfected cells in tissue culture and also reduced (H1N1)pdm09 propagation by a factor of 102 after viral infection was established in vitro. In a mouse infection model of (H1N1)pdm09, POPG and PI significantly reduced lung inflammation and viral burden. Of note, when mice were challenged with a typically lethal dose of 1000 plaque-forming units of (H1N1)pdm09, survival after 10 days was 100% (14 of 14 mice) with the POPG treatment compared with 0% (0 of 14 mice) without this treatment. POPG also significantly reduced inflammatory infiltrates and the viral burden induced by (H1N1)pdm09 infection in a ferret model. These findings indicate that anionic phospholipids potently and efficiently disrupt influenza infections in animal models.


1998 ◽  
Vol 72 (5) ◽  
pp. 4371-4378 ◽  
Author(s):  
Shosuke Imai ◽  
Jun Nishikawa ◽  
Kenzo Takada

ABSTRACT We show clear evidence for direct infection of various human epithelial cells by Epstein-Barr virus (EBV) in vitro. The successful infection was achieved by using recombinant EBV (Akata strain) carrying a selective marker gene but without any other artificial operations, such as introduction of the known EBV receptor (CD21) gene or addition of polymeric immunoglobulin A against viral gp350 in culture. Of 21 human epithelial cell lines examined, 18 became infected by EBV, as ascertained by the detection of EBV-determined nuclear antigen (EBNA) 1 expression in the early period after virus exposure, and the following selection culture easily yielded a number of EBV-infected clones from 15 cell lines. None of the human fibroblasts and five nonhuman-derived cell lines examined was susceptible to the infection. By comparison, cocultivation with virus producers showed ≈800-fold-higher efficiency of infection than cell-free infection did, suggesting the significance of direct cell-to-cell contact as a mode of virus spread in vivo. Most of the epithelial cell lines infectable with EBV were negative for CD21 expression at the protein and mRNA levels. The majority of EBV-infected clones established from each cell line invariably expressed EBNA1, EBV-encoded small RNAs, rightward transcripts from theBamHI-A region of the virus genome, and latent membrane protein (LMP) 2A, but not the other EBNAs or LMP1. This restricted form of latent viral gene expression, which is a central issue for understanding epithelial oncogenesis by EBV, resembled that seen in EBV-associated gastric carcinoma and LMP1-negative nasopharyngeal carcinoma. The results indicate that direct infection of epithelial cells by EBV may occur naturally in vivo, and this could be mediated by an unidentified, epithelium-specific binding receptor for EBV. The EBV convertants are viewed, at least in terms of viral gene expression, as in vitro analogs of EBV-associated epithelial tumor cells, thus facilitating analysis of an oncogenic role(s) for EBV in epithelial cells.


Blood ◽  
2003 ◽  
Vol 102 (12) ◽  
pp. 3963-3969 ◽  
Author(s):  
Jianxin Ye ◽  
Lee Silverman ◽  
Michael D. Lairmore ◽  
Patrick L. Green

Abstract Human T-cell leukemia virus type 1 (HTLV-1) is associated with leukemia/lymphoma and neurologic disorders. Although the viral transcriptional activator Tax is the critical viral oncoprotein, Rex, which regulates the expression of the viral structural and enzymatic genes, is essential for efficient viral replication. Herein, we investigate the contribution of Rex in HTLV-1 immortalization of primary T cells in vitro and viral survival in an infectious rabbit animal model. A Rex-deficient HTLV-1 (HTLVRex-) was constructed and characterized for viral gene expression, protein production, and immortalization capacity. Cells transiently transfected with the HTLVRex- proviral clone produced low detectable levels of p19 Gag. 729HTLVRex- stable transfectants produced functional Tax, but undetectable levels of Rex or p19 Gag. Coculture of irradiated 729HTLVRex- cells with peripheral blood mononuclear cells (PBMCs) resulted in sustained interleukin-2 (IL-2)-dependent growth of primary T lymphocytes. These cells carried the HTLVRex- genome and expressed tax/rex mRNA but produced no detectable Rex or p19 Gag. Rabbits inoculated with irradiated 729HTLVRex- cells or 729HTLVRex- cells transiently transfected with a Rex cDNA expression plasmid failed to become persistently infected or mount a detectable antibody response to the viral gene products. Together, our results provide the first direct evidence that Rex and its function to modulate viral gene expression and virion production is not required for in vitro immortalization by HTLV-1. However, Rex is critical for efficient infection of cells and persistence in vivo.


2007 ◽  
Vol 81 (8) ◽  
pp. 3816-3826 ◽  
Author(s):  
Daniel N. Streblow ◽  
Koen W. R. van Cleef ◽  
Craig N. Kreklywich ◽  
Christine Meyer ◽  
Patricia Smith ◽  
...  

ABSTRACT Rat cytomegalovirus (RCMV) is a β-herpesvirus with a 230-kbp genome containing over 167 open reading frames (ORFs). RCMV gene expression is tightly regulated in cultured cells, occurring in three distinct kinetic classes (immediate early, early, and late). However, the extent of viral-gene expression in vivo and its relationship to the in vitro expression are unknown. In this study, we used RCMV-specific DNA microarrays to investigate the viral transcriptional profiles in cultured, RCMV-infected endothelial cells, fibroblasts, and aortic smooth muscle cells and to compare these profiles to those found in tissues from RCMV-infected rat heart transplant recipients. In cultured cells, RCMV expresses approximately 95% of the known viral ORFs with few differences between cell types. By contrast, in vivo viral-gene expression in tissues from rat heart allograft recipients is highly restricted. In the tissues studied, a total of 80 viral genes expressing levels twice above background (5,000 to 10,000 copies per μg total RNA) were detected. In each tissue type, there were a number of genes expressed exclusively in that tissue. Although viral mRNA and genomic DNA levels were lower in the spleen than in submandibular glands, the number of individual viral genes expressed was higher in the spleen (60 versus 41). This finding suggests that the number of viral genes expressed is specific to a given tissue and is not dependent upon the viral load or viral mRNA levels. Our results demonstrate that the profiles, as well as the amplitude, of viral-gene expression are tissue specific and are dramatically different from those in infected cultured cells, indicating that RCMV gene expression in vitro does not reflect viral-gene expression in vivo.


2021 ◽  
Author(s):  
Kiran Madugula ◽  
Julie Joseph ◽  
Vanessa Teixeira ◽  
Rashida Ginwala ◽  
Catherine Demarino ◽  
...  

Abstract Background. HTLV-1 is a complex human retrovirus and an etiologic agent causing a malignant and intractable T-cell neoplasia termed Adult T-cell leukemia and lymphoma (ATLL). Patients suffering from ATLL present with poor prognoses and a dearth of treatment options warranting a continuous need to develop novel therapeutic targets. In contrast to the HTLV-1 transactivator protein Tax, HTLV-1 bZIP protein (HBZ) maintains its expression in ATLL cells. The HBZ gene is encoded from the antisense strand of the provirus and is not under the transcriptional control of the 5’ long terminal repeat (LTR) unlike other viral genes such as Tax. Few modifications have been reported in the 3’LTR, which regulates HBZ expression. Herein, we delineate the activities of a transcription factor MEF (Myocyte enhancer factor)-2 at both 5’ and 3’LTRs in the context of ATLL progression and maintenance. Results. In this study, we report that two MEF isoforms (2A and 2C) are highly overexpressed in acute ATLL patients from North America. These isoforms are recruited to the viral promoters at both the 5’ and 3’LTRs. Their knockdown by shRNAs resulted in the downregulation of Tax and HBZ expression as well as a significant decrease in proliferation and cell cycle arrest in ATLL cells. Similarly, chemical inhibition of MEF proteins by MC1568 (a selective Class IIa HDAC inhibitor) resulted in the cytotoxicity of ATLL cells in vitro as well as reduction of proviral load and viral gene expression in vivo. At the molecular level, high enrichment of MEF-2C occurred at the 3’LTR along with cofactors Menin, Jun D, and Sp1/Sp3 thus providing a novel mechanism of regulation at the antisense promoter of HTLV-1. Conclusions. This study establishes MEF-2 as critical players in ATLL, which interacts with Tax and HBZ at their respective promoters highlighting a novel mechanism of regulation at the 3’LTR involving Jun D and Menin. MEF signaling represent a potential target for therapeutic intervention.


2019 ◽  
Author(s):  
Helen M. Wise ◽  
Eleanor Gaunt ◽  
Jihui Ping ◽  
Barbara Holzer ◽  
Seema Jasim ◽  
...  

AbstractThe 2009 influenza A virus (IAV) pandemic (pdm2009) was caused by a swine H1N1 virus with several atypical genetic features. Here, we investigate the origin and significance of an upstream AUG (uAUG) codon in the 5’-untranslated region of the NP gene. Phylogeny indicated that the uAUG codon arose in the classical swine IAV lineage in the mid 20th Century, and has become fixed in the current triple reassortant, variant pdm2009 swine IAV and human pdm2009 lineages. Functionally, it supports leaky ribosomal initiation in vitro and in vivo to produce two isoforms of NP: canonical, and a longer “eNP”. The uAUG codon had little effect on viral gene expression or replication in vitro. However, in both murine and porcine models of IAV infection, removing the uAUG codon gene attenuated pdm2009 virus pathogenicity. Thus, the NP uAUG codon is a virulence factor for swine IAVs with proven zoonotic ability.


Sign in / Sign up

Export Citation Format

Share Document