scholarly journals Modeling and controlling a quarter-vehicle active suspension model

2021 ◽  
Vol 2061 (1) ◽  
pp. 012138
Author(s):  
Vu Hai Quan ◽  
Nguyen Huy Truong ◽  
Nguyen Trong Duc

Abstract This paper presents an application of the LQR active suspension control algorithm for a vertical planar oscillation model developed for ¼ of a vehicle. The wheel smoothness and dynamics with the road surface are two parameters to provide control signals. A simulation model is developed here based on MATLAB software to compare and evaluate the LQR active suspension model with the passive suspension. The results obtained here shows an improvement for a number of parameters when utilizing the active suspension model including fluctuating amplitude; oscillation damping time; the displacement acceleration of the active suspension body.

Author(s):  
Baek-soon Kwon ◽  
Daejun Kang ◽  
Kyongsu Yi

This article deals with the design of a partial preview active suspension control algorithm for the improvement of vehicle ride comfort. Generally, while preview-controlled active suspension systems have even greater potential than feedback-controlled systems, their main challenge is obtaining preview information of the road profile ahead. A critical drawback of the “look-ahead” sensors is an increased risk of incorrect detection influenced by water, snow, and other soft obstacles on the road. In this work, a feasible wheelbase preview suspension control algorithm without information about the road elevation has been developed based on a novel 3-degree-of-freedom full-car dynamic model which incorporates only the vehicle body dynamics. The main advantage of the employed vehicle model is that the system disturbance input vector consists of vertical wheel accelerations that can be measured easily. The measured acceleration information of the front wheels is used for predictive control of the rear suspension to stabilize the body motion. The suspension state estimator has also been designed to completely remove the effect of unknown road disturbance on the state estimation error. The estimation performance of an observer is verified via a simulation study and field tests. The performance of the proposed suspension controller is evaluated on a frequency domain and time domain via a simulation study. It is shown that the vehicle ride comfort can be improved more by the proposed wheelbase preview control approach than by the feedback approach.


2013 ◽  
Vol 694-697 ◽  
pp. 2035-2039
Author(s):  
Guang Xing Tan ◽  
Wen Guo Jian ◽  
Shan Li ◽  
Xin Peng Ye

Based on two-degrees-of-freedom (2-DOFs) quarter-car semi-active suspension model, a method for semi-active suspension control is proposed based on immune algorithm. According to this algorithm, an immune controller is designed to research and simulation for semi-active suspension control. Simulation results show that the proposed algorithm is effective,and compared with the passive suspension and fuzzy logic control (FLC) algorithm, its control capability is the best. Using immune controller, the RMS of body vertical acceleration, tire loads and suspension distortion are significantly reduced, so vehicle ride performance, handling stability are effectively improved.


2012 ◽  
Vol 479-481 ◽  
pp. 1355-1360
Author(s):  
Jian Guo Chen ◽  
Jun Sheng Cheng ◽  
Yong Hong Nie

Vehicle suspension is a MIMO coupling nonlinear system; its vibration couples that of the tires. When magneto-rheological dampers are adopted to attenuate vibration of the sprung mass, the damping forces of the dampers need to be distributed. For the suspension without decoupling, the vibration attenuation is difficult to be controlled precisely. In order to attenuate the vibration of the vehicle effectively, a nonlinear full vehicle semi-active suspension model is proposed. Considering the realization of the control of magneto-rheological dampers, a hysteretic polynomial damper model is adopted. A differential geometry approach is used to decouple the nonlinear suspension system, so that the wheels and sprung mass become independent linear subsystems and independent to each other. A control rule of vibration attenuation is designed, by which the control current applied to the magneto-rheological damper is calculated, and used for the decoupled suspension system. The simulations show that the acceleration of the sprung mass is attenuated greatly, which indicates that the control algorithm is effective and the hysteretic polynomial damper model is practicable.


2020 ◽  
Vol 51 (7-9) ◽  
pp. 119-126
Author(s):  
Shujing Sha ◽  
Zhongnan Wang ◽  
Haiping Du

With the development of automobile technology, the traditional passive suspension cannot meet people’s requirements for vehicle comfort and safety. For this reason, a variable damping semi-active suspension applied magnetorheological damper is proposed. By collecting various performance parameters of the front suspension, the optimal feedback control matrix is obtained by applying linear quadratic Gaussian control strategy, and the optimal damping force output is also obtained to improve comfort and vehicle safety by reducing vibration. The semi-active suspension model of a quarter vehicles was established by MATLAB/Simulink, and the simulation experiment was carried out. The results show that the semi-active suspension system with magnetorheological damper is superior to the traditional passive suspension in terms of vibration absorption; meanwhile, the root mean square values of vehicle acceleration, suspension dynamic deflection, tire dynamic travel, and tire dynamic load are reduced, which effectively improve the vehicle ride stability.


2015 ◽  
Vol 713-715 ◽  
pp. 748-751 ◽  
Author(s):  
Bo Wei Bi ◽  
Fang Xiao

The research of semi active suspension control strategy once was a hot point in the field of automobile suspension [2, 3], but it is difficult to achieve for most of them. I choose VI-CarRealTime to build vehicle model based on ADAMS vehicle model. Kalman Filter designed based on 1/2 vehicle model supply control signals for controller. Considering characteristics of CDC damper, Skyhook control strategy is applied for simulation, the simulation results show that, Skyhook Control can improve vehicle ride comfort in CDC damper control range.


2017 ◽  
Vol 55 (8) ◽  
pp. 1099-1122 ◽  
Author(s):  
Shida Nie ◽  
Ye Zhuang ◽  
Weiping Liu ◽  
Fan Chen

2021 ◽  
Vol 2129 (1) ◽  
pp. 012014
Author(s):  
M H Ab Talib ◽  
I Z Mat Darus ◽  
H M Yatim ◽  
M S Hadi ◽  
N M R Shaharuddin ◽  
...  

Abstract The semi-active suspension (SAS) system is a partial suspension device used in the vehicle system to improve the ride comfort and road handling. Due to the high non-linearity of the road profile disturbances plus uncertainties derived from vehicle dynamics, a conventional Skyhook controller is not deemed enough for the vehicle system to improve the performance. A major problem of the implementation of the controller is to optimize a proper parameter as this is an important element in demanding a good controller response. An advanced Firefly Algorithm (AFA) integrated with the modified skyhook (MSky) is proposed to enhance the robustness of the system and thus able to improve the vehicle ride comfort. In this paper, the controller scheme to be known as MSky-AFA was validated via MATLAB simulation environment. A different optimizer based on the original firefly algorithm (FA) is also studied in order to compute the parameter of the MSky controller. This control scheme to be known as MSky-FA was evaluated and compared to the proposed MSky-AFA as well as the passive suspension control. The results clearly exhibit more superior and better response of the MSky-AFA in reducing the body acceleration and displacement amplitude in comparison to the MSky-FA and passive counterparts for a sinusoidal road profile condition.


Author(s):  
M. A. Ajaj ◽  
A. M. Sharaf ◽  
S. A. Hegazy ◽  
Y. H. Hossamel-deen

This paper presents a comprehensive investigation of automotive semi-active suspension control algorithms and compares their characteristics in terms of ride comfort and tire-road holding ability. Particular attention has been paid to the semi-active suspension systems fitted with a shock absorber of dual damping characteristics. Different mathematical models are presented to investigate the ride response considering both simplified and complex vehicle models. Numerical simulation has been carried out through the MATLAB/SIMULINK environment which aids the future development of controllable suspension systems to improve vehicle ride comfort. The results show a considerable improvement of the vehicle ride response using different schemes of semi-active suspension system in particular the modified groundhook control algorithm.


2014 ◽  
Vol 602-605 ◽  
pp. 1372-1377 ◽  
Author(s):  
Yi Zhang ◽  
Li Li Sun

In order to improve the control effect of vehicle suspension, the simplified Seven-DOF active suspension model was created in ADAMS/View by applying the dynamics theory, and classical PID control principle was utilized to design an active suspension controller for vehicle. The vehicle model was imported into the PID controller established in MATLAB as a module to create a vehicle active suspension control model. According to the simulation results, compared with passive suspension, the PID control of active suspension can control effectively the vertical vibration acceleration (VVA),roll and pitch acceleration (RAA&PAA) of body ,which improved vehicle ride comfort performance.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 813
Author(s):  
Gia Quoc Bao Tran ◽  
Thanh-Phong Pham ◽  
Olivier Sename ◽  
Eduarda Costa ◽  
Péter Gáspár

This paper presents an integrated linear parameter-varying (LPV) control approach of an autonomous vehicle with an objective to guarantee driving comfort, consisting of cruise and semi-active suspension control. First, the vehicle longitudinal and vertical dynamics (equipped with a semi-active suspension system) are presented and written into LPV state-space representations. The reference speed is calculated online from the estimated road type and the desired comfort level (characterized by the frequency weighted vertical acceleration defined in the ISO 2631 norm) usingprecomputed polynomial functions. Then, concerning cruise control, an LPV H2 controller using a linear matrix inequality (LMI) based polytopic approach combined with the compensation of the estimated disturbance forces is developed to track the comfort-oriented reference speed. To further enhance passengers’ comfort, a decentralized LPV H2 controller for the semi-active suspension system is proposed, minimizing the effect of the road profile variations. The interaction with cruise control is achieved by the vehicle’s actual speed being a scheduling parameter for suspension control. To assess the strategy’s performance, simulations are conducted using a realistic nonlinear vehicle model validated from experimental data. The simulation results demonstrate the proposed approach’s capability to improve driving comfort.


Sign in / Sign up

Export Citation Format

Share Document