Development of a model for thin films and numerical sensitivity tests

Author(s):  
Amélie Simon ◽  
Jean-Marc Dorey ◽  
Michel Lance

Because the unsteady behavior of liquid films in steam turbines is a key point for additional friction losses and atomization process (that leads to coarse water generation), the development of a dedicated model has been found necessary. A two-dimensional computational fluid dynamics code for unstructured mesh is being developed using the finite volume method to simulate this thin liquid film. The aim is to predict the formation of the waves in the film since it is suspected to be a key parameter for friction and atomization. Applied as a first step to a plane plate, the code has been verified in a one-dimensional version with analytical solutions and is tested in low-pressure turbine steam conditions. Falling films computations (without gas shear stress) show that the model is capable to reproduce the waves’ shape of experiments from the literature. With steam under low-pressure turbine conditions, and compared to experimental data from the University of Michigan, the model including shear stress and surface tension provides good results for heights. Sensitivity calculations have been undergone showing the crucial influence of the surface tension and the generation of solitary waves for high velocities is captured by the code. The effect of gravity is also quantified.

Author(s):  
Kevin Cremanns ◽  
Dirk Roos ◽  
Arne Graßmann

In order to meet the requirements of rising energy demand, one goal in the design process of modern steam turbines is to achieve high efficiencies. A major gain in efficiency is expected from the optimization of the last stage and the subsequent diffuser of a low pressure turbine (LP). The aim of such optimization is to minimize the losses due to separations or inefficient blade or diffuser design. In the usual design process, as is state of the art in the industry, the last stage of the LP and the diffuser is designed and optimized sequentially. The potential physical coupling effects are not considered. Therefore the aim of this paper is to perform both a sequential and coupled optimization of a low pressure steam turbine followed by an axial radial diffuser and subsequently to compare results. In addition to the flow simulation, mechanical and modal analysis is also carried out in order to satisfy the constraints regarding the natural frequencies and stresses. This permits the use of a meta-model, which allows very time efficient three dimensional (3D) calculations to account for all flow field effects.


2017 ◽  
Vol 891 ◽  
pp. 012257 ◽  
Author(s):  
A E Zaryankin ◽  
A N Rogalev ◽  
S K Osipov ◽  
N M Bychkov

2002 ◽  
Vol 124 (4) ◽  
pp. 656-664 ◽  
Author(s):  
Ralph J. Volino

Spectral analysis was used to investigate boundary layer separation, transition and reattachment under low-pressure turbine airfoil conditions. Cases with Reynolds numbers ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) have been considered at low (0.5%) and high (9% inlet) free-stream turbulence levels. Spectra of the fluctuating streamwise velocity and the turbulent shear stress are presented. The spectra for the low free-stream turbulence cases are characterized by sharp peaks. The high free-stream turbulence case spectra exhibit more broadband peaks, but these peaks are centered at the same frequencies observed in the corresponding low turbulence cases. The frequencies of the peaks suggest that a Tollmien-Schlichting instability mechanism drives transition, even in the high turbulence cases. The turbulent shear stress spectra proved particularly valuable for detection of the early growth of the instability. The predictable nature of the instability may prove useful for future flow control work.


Author(s):  
Shuang Sun ◽  
Xingshuang Wu ◽  
Tianrong Tan ◽  
Canlin Zuo ◽  
Sirui Pan ◽  
...  

Abstract At low Reynolds numbers operating condition, the boundary layer of the high-lift low-pressure turbine (LPT) of aero-engines is prone to separate on the suction surface of the airfoil. The profile losses of the airfoil are largely governed by the size of the separation bubble and the transition process in the boundary layer. However, the wake-induced transition, the natural transition and the instability induced by the Klebanoff streaks complicate the transition process. The boundary layer on the suction surface of a high-lift LPT was investigated at Re = 50,000 with upstream wakes. The numerical simulation was performed with the CFX software using large eddy simulations (LES), and the experiment was performed on a linear cascade. In this study, the wake is divided into the wake center and the wake tail, the unsteady formation process of the streaks and the wall shear stress caused by the wake are analyzed. A new mechanism of generation and development of Klebanoff Streaks was presented to better understand the effect of the wake on the boundary layer. Moreover, it was found that after entering the blade passage, the wake center does not contact the blade but causes the wall shear stress of the front part on the suction surface to increase. However, it is not possible to form strong Klebanoff streaks at the leading edge of the blade by shear sheltering effect. Only the wake tail can form Klebanoff streaks when it contacts the blade.


Author(s):  
Satoshi Miyake ◽  
Hironori Miyazawa ◽  
Satoru Yamamoto ◽  
Yasuhiro Sasao ◽  
Kazuhiro Momma ◽  
...  

Unsteady three-dimensional wet-steam flows through stator–rotor blade rows in the final three stages of a low-pressure steam turbine, taking the blade number into consideration, are numerically investigated. In ASME Turbo Expo 2014, we presented the numerical results of the unsteady flow assuming the same blade number. Here, this previous study is extended to flow simulations using the real blade number. The flows under three flow conditions, with and without condensation and considering the same and real blade numbers are simulated, and the numerical results are compared with each other and with the experimental results. Finally, the effect of the blade number on unsteady wet-steam flows in real low-pressure steam turbines is discussed.


2002 ◽  
Vol 124 (4) ◽  
pp. 645-655 ◽  
Author(s):  
Ralph J. Volino

Boundary layer separation, transition and reattachment have been studied experimentally under low-pressure turbine airfoil conditions. Cases with Reynolds numbers (Re) ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) have been considered at low (0.5%) and high (9% inlet) free-stream turbulence levels. Mean and fluctuating velocity and intermittency profiles are presented for streamwise locations all along the airfoil, and turbulent shear stress profiles are provided for the downstream region where separation and transition occur. Higher Re or free-stream turbulence level moves transition upstream. Transition is initiated in the shear layer over the separation bubble and leads to rapid boundary layer reattachment. At the lowest Re, transition did not occur before the trailing edge, and the boundary layer did not reattach. Turbulent shear stress levels can remain low in spite of high free-stream turbulence and high fluctuating streamwise velocity in the shear layer. The beginning of a significant rise in the turbulent shear stress signals the beginning of transition. A slight rise in the turbulent shear stress near the trailing edge was noted even in those cases which did not undergo transition or reattachment. The present results provide detailed documentation of the boundary layer and extend the existing database to lower Re. The present results also serve as a baseline for an investigation of turbulence spectra in Part 2 of the present paper, and for ongoing work involving transition and separation control.


1984 ◽  
Vol 106 (4) ◽  
pp. 716-724 ◽  
Author(s):  
C. C. Yeoh ◽  
J. B. Young

The paper describes a throughflow computational method that combines wet steam theory with an axisymmetric streamline curvature technique in order to predict nonequilibrium effects in low-pressure steam turbines. The computer program developed is able to deal with both subsonic and fully choked supersonic flows, and steam properties are represented by a truncated virial equation of state. A number of theoretical test cases have been investigated, including the nonequilibrium flow in the primary nucleating stage of a low-pressure turbine and the complete analysis of a six-stage, 320-MW operational turbine. The calculations are the first of their kind in being able to provide information on the spanwise variation of the Wilson point, the average droplet size nucleated, the degree of supercooling throughout the flowfield, the thermodynamic wetness loss, and the nonequilibrium choking mass flow rate in addition to the aerodynamic parameters which are of interest to the designer.


Author(s):  
Ralph J. Volino ◽  
Olga Kartuzova ◽  
Mounir B. Ibrahim

Boundary layer separation, transition and reattachment have been studied on a very high lift, low-pressure turbine airfoil. Experiments were done under high (4%) freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Velocity profiles were acquired in the suction side boundary layer at several streamwise locations using hot-wire anemometry. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) ranging from 25,000 to 300,000. At the lowest Reynolds number the boundary layer separated and did not reattach, in spite of transition in the separated shear layer. At higher Reynolds numbers the boundary layer did reattach, and the separation bubble became smaller as Re increased. High freestream turbulence increased the thickness of the separated shear layer, resulting in a thinner separation bubble. This effect resulted in reattachment at intermediate Reynolds numbers, which was not observed at the same Re under low freestream turbulence conditions. Numerical simulations were performed using an unsteady Reynolds averaged Navier-Stokes (URANS) code with both a shear stress transport k-ω model and a 4 equation shear stress transport Transition model. Both models correctly predicted separation and reattachment (if it occurred) at all Reynolds numbers. The Transition model generally provided better quantitative results, correctly predicting velocities, pressure, and separation and transition locations. The model also correctly predicted the difference between high and low freestream turbulence cases.


2018 ◽  
Author(s):  
Zaryankin Arkadiy ◽  
Osipov Sergey ◽  
Krutitskii Vladislav

1980 ◽  
Vol 101 (1) ◽  
pp. 33-51 ◽  
Author(s):  
M. Foda ◽  
R. G. Cox

The spreading on a water–air interface of a thin liquid film is examined for the situation in which surface tension gradients drive the motion. A similarity solution is obtained numerically for unidirectional spreading when some general restrictions concerning the form of the liquid film constitutive relation is made. This solution gives the size of the film as a function of time and also the velocity and thickness distribution along the spreading film. Experiments are performed which show good agreement with the theory.


Sign in / Sign up

Export Citation Format

Share Document