The spreading of thin liquid films on a water-air interface

1980 ◽  
Vol 101 (1) ◽  
pp. 33-51 ◽  
Author(s):  
M. Foda ◽  
R. G. Cox

The spreading on a water–air interface of a thin liquid film is examined for the situation in which surface tension gradients drive the motion. A similarity solution is obtained numerically for unidirectional spreading when some general restrictions concerning the form of the liquid film constitutive relation is made. This solution gives the size of the film as a function of time and also the velocity and thickness distribution along the spreading film. Experiments are performed which show good agreement with the theory.

1992 ◽  
Vol 236 ◽  
pp. 497-511 ◽  
Author(s):  
G. F. Hewitt ◽  
S. Jayanti

Depending on the flow conditions, the liquid film in annular two-phase flow in coiled tubes may be pushed towards the outer or the inner side by the centrifugal force. It is important to understand the mechanism of this ‘film inversion’ in order to develop a predictive model for the film thickness distribution. In this paper, this phenomenon is studied analytically, and a new criterion, based on the secondary flow in the thin liquid film, is proposed to predict its occurrence. The criterion shows good agreement with available experimental data. It is suggested that the analytical model can readily be extended to predict the distribution of the film thickness and film flow rate in coiled tubes.


Flow ◽  
2021 ◽  
Vol 1 ◽  
Author(s):  
Israel Gabay ◽  
Federico Paratore ◽  
Evgeniy Boyko ◽  
Antonio Ramos ◽  
Amir D. Gat ◽  
...  

Abstract We present a theoretical model and experimental demonstration of thin liquid film deformations due to a dielectric force distribution established by surface electrodes. We model the spatial electric field produced by a pair of parallel electrodes and use it to evaluate the stress on the liquid–air interface through Maxwell stresses. By coupling this force with the Young–Laplace equation, we obtain the deformation of the interface. To validate our theory, we design an experimental set-up which uses microfabricated electrodes to achieve spatial dielectrophoretic actuation of a thin liquid film, while providing measurements of microscale deformations through digital holographic microscopy. We characterize the deformation as a function of the electrode-pair geometry and film thickness, showing very good agreement with the model. Based on the insights from the characterization of the system, we pattern conductive lines of electrode pairs on the surface of a microfluidic chamber and demonstrate the ability to produce complex two-dimensional deformations. The films can remain in liquid form and be dynamically modulated between different configurations or polymerized to create solid structures with high surface quality.


2012 ◽  
Vol 11 (3) ◽  
pp. 169-175 ◽  
Author(s):  
C. S. Boxe ◽  
K. P. Hand ◽  
K. H. Nealson ◽  
Y. L. Yung ◽  
A. S. Yen ◽  
...  

AbstractAt present, bulk liquid water on the surface and near-subsurface of Mars does not exist due to the scarcity of condensed- and gas-phase water, pressure and temperature constraints. Given that the nuclei of soil and ice, that is, the soil solid and ice lattice, respectively, are coated with adsorbed and/or thin liquid films of water well below 273 K and the availability of water limits biological activity, we quantify lower and upper limits for the thickness of such adsorbed/water films on the surface of the Martian regolith and for subsurface ice. These limits were calculated based on experimental and theoretical data for pure water ice and water ice containing impurities, where water ice containing impurities exhibit thin liquid film enhancements, ranging from 3 to 90. Close to the cold limit of water stability (i.e. 273 K), thin liquid film thicknesses at the surface of the Martian regolith is 0.06 nm (pure water ice) and ranges from 0.2 to 5 nm (water ice with impurities). An adsorbed water layer of 0.06 nm implies a dessicated surface as the thickness of one monolayer of water is 0.3 nm but represents 0.001–0.02% of the Martian atmospheric water vapour inventory. Taking into account the specific surface area (SSA) of surface-soil (i.e. top 1 mm of regolith and 0.06 nm adsorbed water layer), shows Martian surface-soil may contain interfacial water that represents 6–66% of the upper- and lower-limit atmospheric water vapour inventory and almost four times and 33%, the lower- and upper-limit Martian atmospheric water vapour inventory. Similarly, taking the SSA of Martian soil, the top 1 mm or regolith at 5 nm thin liquid water thickness, yields 1.10×1013and 6.50×1013litres of waters, respectively, 55–325 times larger than Mars’ atmospheric water vapour inventory. Film thicknesses of 0.2 and 5 nm represent 2.3×104–1.5×106litres of water, which is 6.0×10−7–4.0×10−4%, respectively, of a 10 prμm water vapour column, and 3.0×10−6–4.0×10−4% and 6.0×10−6–8.0×10−4%, respectively, of the Martian atmospheric water vapour inventory. Thin liquid film thicknesses on/in subsurface ice were investigated via two scenarios: (i) under the idealistic case where it is assumed that the diurnal thermal wave is equal to the temperature of ice tens of centimetres below the surface, allowing for such ice to experience temperatures close to 273 K and (ii) under the, likely, realistic scenario where the diurnal thermal wave allows for the maximum subsurface ice temperature of 235 K at 1 m depth between 30°N and 30°S. Scenario 1 yields thin liquid film thicknesses ranging from 11 to 90 nm; these amounts represent 4×106–3.0×107litres of water. For pure water ice, Scenario 2 reveals that the thickness of thin liquid films contained on/within Martian subsurface is less than 1.2 nm, several molecular layers thick. Conversely, via the effect of impurities at 235 K allows for a thin liquid film thickness on/within subsurface ice of 0.5 nm, corresponding to 6.0×104litres of water. The existence of thin films on Mars is supported by data from the Mars Exploration Rovers (MERs) Spirit and Opportunity's Alpha Proton X-ray Spectrometer instrumentation, which have detected increased levels of bromine beneath the immediate surface, suggestive of the mobilization of soluble salts by thin films of liquid water towards local cold traps. These findings show that biological activity on the Martian surface and subsurface is not limited by nanometre dimensions of available water.


2015 ◽  
Vol 17 (5) ◽  
pp. 1301-1319 ◽  
Author(s):  
A. L. Kupershtokh ◽  
E. V. Ermanyuk ◽  
N. V. Gavrilov

AbstractThis paper presents a numerical and experimental study on hydrodynamic behavior of thin liquid films in rectangular domains. Three-dimensional computer simulations were performed using the lattice Boltzmann equation method (LBM). The liquid films laying on solid and liquid substrates are considered. The rupture of liquid films in computations is initiated via the thermocapillary (Marangoni) effect by applying an initial spatially localized temperature perturbation. The rupture scenario is found to depend on the shape of the temperature distribution and on the wettability of the solid substrate. For a wettable solid substrate, complete rupture does not occur: a residual thin liquid film remains at the substrate in the region of pseudo-rupture. For a non-wettable solid substrate, a sharp-peaked axisymmetric temperature distribution induces the rupture at the center of symmetry where the temperature is maximal. Axisymmetric temperature distribution with a flat-peaked temperature profile initiates rupture of the liquid film along a circle at some distance from the center of symmetry. The outer boundary of the rupture expands, while the inner liquid disk transforms into a toroidal figure and ultimately into an oscillating droplet.We also apply the LBM to simulations of an evolution of one or two holes in liquid films for two-layer systems of immiscible fluids in a rectangular cell. The computed patterns are successfully compared against the results of experimental visualizations. Both the experiments and the simulations demonstrate that the initially circular holes evolved in the rectangular cell undergoing drastic changes of their shape under the effects of the surface tension and gravity. In the case of two interacting holes, the disruption of the liquid bridge separating two holes is experimentally observed and numerically simulated.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 2610-2618 ◽  
Author(s):  
Meisam Habibi Matin ◽  
Abdolreza Fazeli ◽  
Saeed Moghaddam

Using novel microsensors, the formation and evaporation of thin liquid films in microchannels are characterized.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
R. W. Rambach ◽  
J. Taiber ◽  
C. M. L. Scheck ◽  
C. Meyer ◽  
J. Reboud ◽  
...  

Abstract We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect.


Author(s):  
Zezhi Zeng ◽  
Gopinath Warrier ◽  
Y. Sungtaek Ju

Direct-contact heat transfer between a falling liquid film and a gas stream yield high heat transfer rates and as such it is routinely used in several industrial applications. This concept has been incorporated by us into the proposed design of a novel heat exchanger for indirect cooling of steam in power plants. The DILSHE (Direct-contact Liquid-on-String Heat Exchangers) module consists of an array of small diameter (∼ 1 mm) vertical strings with hot liquid coolant flowing down them due to gravity. A low- or near-zero vapor pressure liquid coolant is essential to minimize/eliminate coolant loss. Consequently, liquids such as Ionic Liquids and Silicone oils are ideal candidates for the coolant. The liquid film thickness is of the order of 1 mm. Gas (ambient air) flowing upwards cools the hot liquid coolant. Onset of fluid instabilities (Rayleigh-Plateau and/or Kapitza instabilities) result in the formation of a liquid beads, which enhance heat transfer due to additional mixing. The key to successfully designing and operating DILSHE is understanding the fundamentals of the liquid film fluid dynamics and heat transfer and developing an operational performance map. As a first step towards achieving these goals, we have undertaken a parametric experimental and numerical study to investigate the fluid dynamics of thin liquid films flowing down small diameter strings. Silicone oil and air are the working fluids in the experiments. The experiments were performed with a single nylon sting (fishing line) of diameter = 0.61 mm and height = 1.6 m. The inlet temperature of both liquid and air were constant (∼ 20 °C). In the present set of experiments the variables that were parametrically varied were: (i) liquid mass flow rate (0.05 to 0.23 g/s) and (ii) average air velocity (0 to 2.7 m/s). Visualization of the liquid flow was performed using a high-speed camera. Parameters such as base liquid film thickness, liquid bead shape and size, velocity (and hence frequency) of beads were measured from the high-speed video recordings. The effect of gas velocity on the dynamics of the liquid beads was compared to data available in the open literature. Within the range of gas velocities used in the experiments, the occurrence of liquid hold up and/or liquid blow over, if any, were also identified. Numerical simulations of the two-phase flow are currently being performed. The experimental results will be invaluable in validation/refinement of the numerical simulations and development of the operational map.


1990 ◽  
Vol 217 ◽  
pp. 469-485 ◽  
Author(s):  
Marc K. Smith

A physical mechanism for the long-wave instability of thin liquid films is presented. We show that the many diverse systems that exhibit this instability can be classified into two large groups. Each group is studied using the model of a thin liquid film with a deformable top surface flowing down a rigid inclined plane. In the first group, the top surface has an imposed stress, while in the other, an imposed velocity. The proposed mechanism shows how the details of the energy transfer from the basic state to the disturbance are handled differently in each of these cases, and how a common growth mechanism produces the unstable motion of the disturbance.


1995 ◽  
Vol 117 (4) ◽  
pp. 1042-1047 ◽  
Author(s):  
S. H. Chan ◽  
J. D. Blake ◽  
T. R. Shen ◽  
Y. G. Zhao

Theoretical and experimental investigations of the rewetting characteristics of thin liquid films over heated and unheated capillary grooved plates were performed. To investigate the effect of gravity on rewetting, the grooved surface was placed in upward and downward-facing positions. Profound gravitational effects were observed as the rewetting velocity was found to be higher in the upward than in the downward-facing orientation. The difference was even greater with higher initial plate temperatures. With either orientation, it was found that the rewetting velocity increased with the initial plate temperature. But when the temperature was raised above a rewetting temperature, the rewetting velocity decreased with the initial plate temperature. Hydrodynamically controlled and heat conduction controlled rewetting models were then presented to explain and to predict the rewetting characteristics in these two distinct regions. The predicted rewetting velocities were found to be in good agreement with experimental data with elevated plate temperatures.


2011 ◽  
Vol 17 (5-7) ◽  
pp. 983-990 ◽  
Author(s):  
Hiroshige Matsuoka ◽  
Koji Oka ◽  
Yusuke Yamashita ◽  
Fumihiro Saeki ◽  
Shigehisa Fukui

Sign in / Sign up

Export Citation Format

Share Document