Combustion kinetics of lignite preheated under oxygen-enriched conditions

2019 ◽  
Vol 31 (5) ◽  
pp. 813-824
Author(s):  
Özlem Uğuz ◽  
Hanzade Haykiri-Açma ◽  
Serdar Yaman

This study bases on the testing of the solid-state kinetic models to determine the combustion kinetics of thermally pretreated Turkish lignite (Adiyaman–Golbasi) in O2-enriched environment. The lignite sample was first preheated in a horizontal tube furnace at temperatures of 200°C, 400°C and 600°C that correspond to torrefaction, partly devolatilization and partly ashing temperatures. Oxidative environments that have the O2 concentrations of 21, 30, 40 and 50 vol.%. were created during this treatment by changing the ratio of O2/N2 in the binary gas mixtures. The solid residues remaining after oxidation were then subjected to non-isothermal combustion conditions in a thermal analyzer up to 900°C under dry air atmosphere. The conversion degrees calculated from the thermogravimetric analysis were used to establish the kinetic parameters based on the Coats–Redfern method. It was concluded that the first-order reaction model fits well for both the combustion of volatiles and the burning of the char. It was also seen that the concentration of O2 in the pre-oxidation stage plays an important role as treatment temperature also increases. Moreover, it was also concluded that the activation energies for the char burning regions of the samples treated at 200°C and 400°C differ seriously.

Fuel ◽  
2021 ◽  
pp. 120736
Author(s):  
Trupti Kathrotia ◽  
Patrick Oßwald ◽  
Clemens Naumann ◽  
Sandra Richter ◽  
Markus Köhler

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2257
Author(s):  
Joanna Wnorowska ◽  
Szymon Ciukaj ◽  
Sylwester Kalisz

The paper presents the combustion profile of selected fuels as a result of thermogravimetric analysis. The main purpose of this study was to investigate a mixture of different types of fuel and the influence of the use of a fuel additive on the combustion process profile. As a fuel additive, halloysite was used to investigate the thermogravimetric profiles. It was confirmed that the main combustion parameters such as ignition temperature, burnout temperature, and maximum peak temperature correlated accordingly with different combustibility indices such as the ignition index, the burnout index, and the combustion indices. Furthermore, the present study provided a comparison of selected methods for analyzing non-isothermal solid-state kinetic data and investigated the kinetics of thermal decomposition to describe the ongoing process. Two non-isothermal model methods (Kissinger and Ozawa) were used to calculate the Arrhenius parameters. The effect of heating rate and the addition of halloysite as a fuel additive on decomposition were studied.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 195
Author(s):  
Ivan Vitázek ◽  
Martin Šotnar ◽  
Stella Hrehová ◽  
Kristína Darnadyová ◽  
Jan Mareček

The thermal decomposition of wood chips from an apple tree is studied in a static air atmosphere under isothermal conditions. Based on the thermogravimetric analysis, the values of the apparent activation energy and pre-exponential factor are 34 ± 3 kJ mol−1 and 391 ± 2 min−1, respectively. These results have also shown that this process can be described by the rate of the first-order chemical reaction. This reaction model is valid only for a temperature range of 250–290 °C, mainly due to the lignin decomposition. The obtained results are used for kinetic prediction, which is compared with the measurement. The results show that the reaction is slower at higher values of degree of conversion, which is caused by the influence of the experimental condition. Nevertheless, the obtained kinetic parameters could be used for the optimization of the combustion process of wood chips in small-scale biomass boilers.


2019 ◽  
Vol 141 (2) ◽  
pp. 797-806 ◽  
Author(s):  
Tibor Szűcs ◽  
Pal Szentannai

AbstractThe utilization of challenging solid fuels in the energy industry is urged by environmental requirements. The combustion kinetics of these fuel particles differs markedly from that of pulverized coal, mainly because of their larger sizes, irregular (nonspherical) shapes, and versatile internal pore structures. Although the intrinsic reaction kinetic measurements on very small amounts of finely ground samples of these particles are mostly available, a bridge toward their apparent reaction modeling is not evident. In this study, a method is introduced to build this bridge, the goodness of which was proved on the example of an industrially relevant biofuel. To do this, the results of a macroscopic combustion measurement with real samples in a well-modelable environment have to be used, and for considering some not negligible effects, 3D CFD modeling of the experimental environment is also to be applied. The outcome is the mass-related reaction effectiveness factor as a function of the rate of conversion. This variable can be considered as the active fraction of the entire particle mass on its periphery, and it can be used as the crucial element in modeling the combustion process of the same particle under other circumstances by including the actual boundary conditions. Another advantage of this method is its covering inherently the entire combustion process (water and volatile release, and char combustion) and also its applicability for reactors utilizing bigger particles like fluidized bed combustors.


2015 ◽  
Vol 123 (1) ◽  
pp. 687-696 ◽  
Author(s):  
Mahmoud A. Sharara ◽  
Sammy S. Sadaka ◽  
Thomas A. Costello ◽  
Karl VanDevender ◽  
Julie Carrier ◽  
...  

Author(s):  
Л.Ф. Сафиуллина

В статье рассмотрен вопрос идентифицируемости математической модели кинетики химической реакции. В процессе решения обратной задачи по оценке параметров модели, характеризующих процесс, нередко возникает вопрос неединственности решения. На примере конкретной реакции продемонстрирована необходимость проводить анализ идентифицируемости модели перед проведением численных расчетов по определению параметров модели химической реакции. The identifiability of the mathematical model of the kinetics of a chemical reaction is investigated in the article. In the process of solving the inverse problem of estimating the parameters of the model, the question arises of the non-uniqueness of the solution. On the example of a specific reaction, the need to analyze the identifiability of the model before carrying out numerical calculations to determine the parameters of the reaction model was demonstrated.


Sign in / Sign up

Export Citation Format

Share Document