Fault diagnosis based on the quality effect of learning algorithm for manufacturing systems

Author(s):  
Imene Djelloul ◽  
Zaki Sari ◽  
Ibrahima dit Bouran Sidibe

Fault diagnosis is becoming an important issue in industrial environment, and the accurate diagnosis is the most significant part in fault handling. This article discusses a fault detection and diagnosis problem for manufacturing systems taking into account rapid detection and speed performances of fault isolation with minimum ambiguity. However, in many complex real plants, it may not be possible to discover accurately the causes of probable faults. The accuracy of fault or fault detection by the traditional approaches is not adequate. Considering the quality effect of the learning algorithm, a new hybrid neural network approach is developed using the integration of a regression task for classification accuracy. Two models of neural networks: gradient descent and momentum & adaptive learning rate and Levenberg–Marquardt are investigated and compared. The performance of the proposed approach is evaluated using mean square error, convergence speed, and classification accuracy. The case study and experimental results are presented and discussed. A comparison with the Levenberg–Marquardt regression approach shows the importance of considering the proposed learning algorithm quality in the fault detection and diagnosis problem compared with those reported in the literature.

2013 ◽  
Vol 427-429 ◽  
pp. 1022-1027 ◽  
Author(s):  
Xue Mei Mo ◽  
Yu Fang ◽  
Yun Guo Yang

This paper proposes a method of the fault detection and diagnosis for the railway turnout based on the current curve of switch machine. Exact curve matching fault detection method and SVM-based fault diagnosis method are adopted in the paper. Based on envelope and morpheme match algorithm, exact curve matching method is used to match the detected current curve with the reference curve so as to predict whether the curve would have fault or not. Moreover, the SVM-based fault diagnosis method is used to make sure that the fault conditions could be diagnosed intelligently. Finally, the experimental results show that the proposed method can accurately identify the turnout fault status in the conversion process, and the accuracy rate in the diagnosis of the fault location is above 98%, which verify the effectiveness of the method in the fault detection and diagnosis.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 227
Author(s):  
Jinlin Zhu ◽  
Muyun Jiang ◽  
Zhong Liu

This work considers industrial process monitoring using a variational autoencoder (VAE). As a powerful deep generative model, the variational autoencoder and its variants have become popular for process monitoring. However, its monitoring ability, especially its fault diagnosis ability, has not been well investigated. In this paper, the process modeling and monitoring capabilities of several VAE variants are comprehensively studied. First, fault detection schemes are defined in three distinct ways, considering latent, residual, and the combined domains. Afterwards, to conduct the fault diagnosis, we first define the deep contribution plot, and then a deep reconstruction-based contribution diagram is proposed for deep domains under the fault propagation mechanism. In a case study, the performance of the process monitoring capability of four deep VAE models, namely, the static VAE model, the dynamic VAE model, and the recurrent VAE models (LSTM-VAE and GRU-VAE), has been comparatively evaluated on the industrial benchmark Tennessee Eastman process. Results show that recurrent VAEs with a deep reconstruction-based diagnosis mechanism are recommended for industrial process monitoring tasks.


2018 ◽  
Vol 25 (s2) ◽  
pp. 92-97 ◽  
Author(s):  
Ying Zhu ◽  
Liang Geng

Abstract The research work in this paper belongs to the application of granular computing, graph theory and its application in fault detection and diagnosis. It is a cross cutting and frontier research field in computer science, information science and graph theory. The results of this paper are of great significance to the application of the fault detection and diagnosis of the ocean boilers system. This research combines granular computing theory and signed directed graph, and proposes a new method of fault diagnosis, and applies it to the fault diagnosis of ocean ship boiler system.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1945
Author(s):  
Icksung Kim ◽  
Woohyun Kim

Fault detection and diagnosis (FDD) systems enable high cost savings and energy savings that could have economic and environmental impact. This study aims to develop and validate a data-driven FDD system for a chiller. The system uses historical operation data to capture quantitative correlations among system variables. This study evaluated the effectiveness and robustness of eight FDD classification methods based on the experimental data of the chiller (the ASHRAE 1043-RP project). The training data used for the FDD system is classified into four cases. Moreover, true and false positive rates are used to characterize the performance of the classification methods. The results show that local fault is not significantly sensitive to training data, and shows high classification accuracy for all cases. The system fault has a significant effect on the amount of data and the severity levels on the classification accuracy.


Author(s):  
Mohammed Misbahul Islam ◽  
Mrs. Madhu Upadhyay

The method of fault diagnosis based on dissolved gas analysis (DGA) is of great importance to detect possible failures in the transformer and to improve the safety of the electrical system. The DGA data of the transformer in the smart grid has the characteristics of a large amount, different types and a low density of values. Since the power transformer is an important type of power supply in the electrical network, this document provides a complete overview of the power transformer and describes how to diagnose faults. Furthermore, on-line monitoring, the method of fault diagnosis and condition-based maintenance strategy decision-making method as also have been described. The paper presents detailed literature on the recent advancements and methods being adopted by various authors on fault detection.


Author(s):  
Dinh-dung Nguyen ◽  
Hong Son Tran ◽  
Thi Thuy Tran ◽  
Dat Dang Quoc ◽  
Hong Tien Nguyen

Angular velocity sensor detection and diagnosis become increasingly essential for the improvement of reliability, safety, and efficiency of the control system on aircraft. The classical methods for fault detection and diagnosis are limit or trend checking of some measurable output variables. Due to they do not give a deeper insight and usually do not allow a fault diagnosis, model-based methods of fault detection and diagnosis were developed by using input and output signals and applying dynamic process models. These approaches are based on parameter estimation, parity equations, or state observers. This paper presents an improvement method to build algorithm fault diagnosis for angular velocity sensors on aircraft. Based on proposed method, results of paper can be used in designed intelligent systems that can automatically fault detection on aircraft.


Author(s):  
Tingyu Xin ◽  
Clive Roberts ◽  
Paul Weston ◽  
Edward Stewart

Railway pantographs are used around the world for collecting electrical energy to power railway vehicles from the overhead catenary. Faults in the pantograph system degrade the quality of the contact between the pantograph and catenary and reduce the reliability of railway operations. To maintain the pantographs in a good working condition, regular inspection tasks are carried out at rolling stock depots. The current pantograph inspections, in general, are only effective for the detection of major faults, providing limited incipient fault detection or fault diagnosis capabilities. Condition monitoring of pantographs has the potential to improve pantograph performance and reduce maintenance costs. As a first step in the realisation of practical pantograph condition monitoring, a laboratory-based pantograph test rig has been developed to gain an understanding of pantograph dynamic behaviours, particularly when incipient faults are present. In the first work of this kind, dynamic response data have been acquired from a number of pantographs that have allowed fault detection and diagnosis algorithms to be developed and verified. Three tests have been developed: (i) a hysteresis test that uses different excitation speeds, (ii) a frequency response test that uses different excitation frequencies, and (iii) a novel changing gradient test. Verification tests indicate that the hysteresis test is effective in detecting and diagnosing pneumatic actuator and elbow joint faults. The frequency response test is able to monitor the overall degradation in the pantograph. The changing gradient test provides fault detection and diagnosis in the pantograph head suspension and pneumatic actuator. The test rig and fault detection and diagnosis algorithms are now being developed into a depot-based prototype together with a number of industrial partners.


2014 ◽  
Vol 670-671 ◽  
pp. 1172-1178
Author(s):  
Da Zhuang Wu ◽  
Yu Fang ◽  
Quan Song Ma

This paper proposes a method of the fault detection and diagnosis for the railway circuit of ZPW-2000 system based on the main track voltage curve. Exact curve matching fault detection method and SVM-based fault diagnosis method are adopted. Based on envelope algorithm, exact curve matching method is used to match the detected current curve with the reference curve so as to predict whether the curve would have fault or not. Then, the SVM-based fault diagnosis method is used to make sure that the fault classification could be diagnosed intelligently. The experiment results show that the proposed method can accurately identify the track circuit fault state, and the accuracy rate in the diagnosis of the fault location is above 99%, which verify the effectiveness of the method in the fault detection and diagnosis.


Sign in / Sign up

Export Citation Format

Share Document