Holocene dust in East Antarctica: Provenance and variability in time and space

The Holocene ◽  
2019 ◽  
Vol 30 (4) ◽  
pp. 546-558 ◽  
Author(s):  
Barbara Delmonte ◽  
Holly Winton ◽  
Mélanie Baroni ◽  
Giovanni Baccolo ◽  
Margareta Hansson ◽  
...  

In this paper, we provide a comprehensive overview of the state-of-knowledge of dust flux and variability in time and space in different sectors of East Antarctica during the Holocene. By integrating the literature data with new evidences, we discuss the dust flux and grain-size variability during the current interglacial and its provenance in the innermost part of the East Antarctic plateau as well as in peripheral regions located close to the Transantarctic Mountains. The local importance of aeolian mineral dust aerosol deflated from low-elevation areas of peripheral East Antarctica is also discussed in the light of new data from several coastal, low-elevation sites.


The Holocene ◽  
2021 ◽  
pp. 095968362110032
Author(s):  
Boo-Keun Khim ◽  
Sunghan Kim ◽  
Yu-Hyeon Park ◽  
Jongmin Lee ◽  
Sangbeom Ha ◽  
...  

Various sediment properties, such as mean grain size, total organic carbon, total nitrogen, C/N ratio, CaCO3, and biogenic opal content, were analyzed for a box core (BC02; 45 cm long) and a gravity core (GC02; 628 cm long), which were collected from the western margin of the Hupo Trough located off the eastern coast of Korea. The study area has been affected by the East Korea Warm Current (EKWC), a branch of the Tsushima Warm Current (TWC). The analytical results obtained for BC02 and the upper part of GC02 were in agreement, affirming the core-top preservation of GC02. Based on the corrected calibrated AMS 14C dates, the sedimentation rate of GC02 changed abruptly at ~8.2 ka from ~4.0–10.2 cm/kyr in the lower part to ~56.6–91.0 cm/kyr in the middle to upper part. This corresponds to the lithologic change from sandy mud to mud sediments showing the mean grain size change from 6.9 to 46.0 μm. Diverse paleoceanographic proxies representing the surface water condition exhibited varying degree of change at ~8.2 ka, after which all the properties remain almost unchanged, implying stable and continuous depositional conditions following the complete development of the EKWC. Furthermore, it indicated that the sediment depositional conditions in the Hupo Trough in response to the EKWC might have stabilized at ~8.2 ka since the opening of the Korea Strait during the Holocene sea level rise. Moreover, microfossil data from previous studies on the establishment of the TWC in the East Sea (Japan Sea) support our interpretation that the sediment properties revealed the Holocene development of the EKWC in the Hupo Trough.



2011 ◽  
Vol 11 (12) ◽  
pp. 6049-6062 ◽  
Author(s):  
X. Yue ◽  
H. Liao ◽  
H. J. Wang ◽  
S. L. Li ◽  
J. P. Tang

Abstract. Mineral dust aerosol can be transported over the nearby oceans and influence the energy balance at the sea surface. The role of dust-induced sea surface temperature (SST) responses in simulations of the climatic effect of dust is examined by using a general circulation model with online simulation of mineral dust and a coupled mixed-layer ocean model. Both the longwave and shortwave radiative effects of mineral dust aerosol are considered in climate simulations. The SST responses are found to be very influential on simulated dust-induced climate change, especially when climate simulations consider the two-way dust-climate coupling to account for the feedbacks. With prescribed SSTs and dust concentrations, we obtain an increase of 0.02 K in the global and annual mean surface air temperature (SAT) in response to dust radiative effects. In contrast, when SSTs are allowed to respond to radiative forcing of dust in the presence of the dust cycle-climate interactions, we obtain a global and annual mean cooling of 0.09 K in SAT by dust. The extra cooling simulated with the SST responses can be attributed to the following two factors: (1) The negative net (shortwave plus longwave) radiative forcing of dust at the surface reduces SST, which decreases latent heat fluxes and upward transport of water vapor, resulting in less warming in the atmosphere; (2) The positive feedback between SST responses and dust cycle. The dust-induced reductions in SST lead to reductions in precipitation (or wet deposition of dust) and hence increase the global burden of small dust particles. These small particles have strong scattering effects, which enhance the dust cooling at the surface and further reduce SSTs.



2014 ◽  
Vol 15 ◽  
pp. 319-334 ◽  
Author(s):  
Sandra Lafon ◽  
Stéphane C. Alfaro ◽  
Servanne Chevaillier ◽  
Jean Louis Rajot


2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Tao Huang ◽  
Liguang Sun ◽  
Nanye Long ◽  
Yuhong Wang ◽  
Wen Huang


2017 ◽  
Vol 18 (12) ◽  
pp. 4342-4355 ◽  
Author(s):  
Andrew J. Turner ◽  
Richard F. Katz ◽  
Mark D. Behn ◽  
Tobias Keller


2018 ◽  
Vol 2 (4) ◽  
pp. 376-386 ◽  
Author(s):  
Sara Ibrahim ◽  
Manolis N. Romanias ◽  
Laurent Y. Alleman ◽  
Mohamad N. Zeineddine ◽  
Giasemi K. Angeli ◽  
...  


2014 ◽  
pp. n/a-n/a ◽  
Author(s):  
Christoph Hauer ◽  
Günther Unfer ◽  
Patrick Holzapfel ◽  
Marlene Haimann ◽  
Helmut Habersack


2012 ◽  
Vol 8 (2) ◽  
pp. 609-623 ◽  
Author(s):  
F. Lambert ◽  
M. Bigler ◽  
J. P. Steffensen ◽  
M. Hutterli ◽  
H. Fischer

Abstract. Ice core data from Antarctica provide detailed insights into the characteristics of past climate, atmospheric circulation, as well as changes in the aerosol load of the atmosphere. We present high-resolution records of soluble calcium (Ca2+), non-sea-salt soluble calcium (nssCa2+), and particulate mineral dust aerosol from the East Antarctic Plateau at a depth resolution of 1 cm, spanning the past 800 000 years. Despite the fact that all three parameters are largely dust-derived, the ratio of nssCa2+ to particulate dust is dependent on the particulate dust concentration itself. We used principal component analysis to extract the joint climatic signal and produce a common high-resolution record of dust flux. This new record is used to identify Antarctic warming events during the past eight glacial periods. The phasing of dust flux and CO2 changes during glacial-interglacial transitions reveals that iron fertilization of the Southern Ocean during the past nine glacial terminations was not the dominant factor in the deglacial rise of CO2 concentrations. Rapid changes in dust flux during glacial terminations and Antarctic warming events point to a rapid response of the southern westerly wind belt in the region of southern South American dust sources on changing climate conditions. The clear lead of these dust changes on temperature rise suggests that an atmospheric reorganization occurred in the Southern Hemisphere before the Southern Ocean warmed significantly.



Sign in / Sign up

Export Citation Format

Share Document