scholarly journals Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica

2012 ◽  
Vol 8 (2) ◽  
pp. 609-623 ◽  
Author(s):  
F. Lambert ◽  
M. Bigler ◽  
J. P. Steffensen ◽  
M. Hutterli ◽  
H. Fischer

Abstract. Ice core data from Antarctica provide detailed insights into the characteristics of past climate, atmospheric circulation, as well as changes in the aerosol load of the atmosphere. We present high-resolution records of soluble calcium (Ca2+), non-sea-salt soluble calcium (nssCa2+), and particulate mineral dust aerosol from the East Antarctic Plateau at a depth resolution of 1 cm, spanning the past 800 000 years. Despite the fact that all three parameters are largely dust-derived, the ratio of nssCa2+ to particulate dust is dependent on the particulate dust concentration itself. We used principal component analysis to extract the joint climatic signal and produce a common high-resolution record of dust flux. This new record is used to identify Antarctic warming events during the past eight glacial periods. The phasing of dust flux and CO2 changes during glacial-interglacial transitions reveals that iron fertilization of the Southern Ocean during the past nine glacial terminations was not the dominant factor in the deglacial rise of CO2 concentrations. Rapid changes in dust flux during glacial terminations and Antarctic warming events point to a rapid response of the southern westerly wind belt in the region of southern South American dust sources on changing climate conditions. The clear lead of these dust changes on temperature rise suggests that an atmospheric reorganization occurred in the Southern Hemisphere before the Southern Ocean warmed significantly.


2011 ◽  
Vol 7 (2) ◽  
pp. 1113-1137 ◽  
Author(s):  
F. Lambert ◽  
M. Bigler ◽  
J. P. Steffensen ◽  
M. Hutterli ◽  
H. Fischer

Abstract. Ice core data from Antarctica provide detailed insights into the characteristics of past climate, atmospheric circulation, as well as changes in the aerosol load of the atmosphere. We present high-resolution records of soluble calcium (Ca2+), non-sea-salt soluble calcium (nssCa2+), and insoluble mineral aerosol dust from the East Antarctic Plateau at a depth resolution of 1 cm, spanning the past 800 000 yr. The comparison shows that the ratio of ionic proxies such as CaCa2+ (or nssCa2+) to particulate dust aerosol is variable in time. Accordingly, the insoluble dust record is representative of large and small atmospheric particulate dust load changes and better suited to quantify the aerosol effect on the radiation balance in the past. In contrast soluble dust proxies such as Ca2+ and nssCa2+ will underestimate this effect but may be better suited to quantify the deposition of chemically active Ca2+ or other soluble dust derived nutrients into the Southern Ocean. The correlation between nssCa2+ and particulate dust is time dependent with high correlations during glacial and low correlation during interglacial times. The low correlation during warm times may be partly caused by changes in the soluble calcium content of dust particles, possibly due to a more acidic atmosphere during interglacials. The ratio of nssCa2+ to dust is dependent on the dust concentration itself. A simple mixing of two dust end members for glacial and interglacial conditions with nssCa2+ to dust ratios of 0.045 and approximately 0.3, respectively, can explain the overall temporal change in the nssCa2+ to dust ratio over time.



Tellus B ◽  
1987 ◽  
Vol 39B (1-2) ◽  
pp. 140-154 ◽  
Author(s):  
U. SIEGENTHALER ◽  
H. OESCHGER
Keyword(s):  
Ice Core ◽  


2013 ◽  
Vol 9 (6) ◽  
pp. 2789-2807 ◽  
Author(s):  
S. Schüpbach ◽  
U. Federer ◽  
P. R. Kaufmann ◽  
S. Albani ◽  
C. Barbante ◽  
...  

Abstract. In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.



2013 ◽  
Vol 9 (1) ◽  
pp. 289-306 ◽  
Author(s):  
G. R. van der Werf ◽  
W. Peters ◽  
T. T. van Leeuwen ◽  
L. Giglio

Abstract. Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation; satellite data indicates that the majority of savannas have not burned in the past 10 yr, even in Africa, which is considered "the burning continent". Although we have not considered increased charcoal burning or changes in OH concentrations as potential causes for the elevated CO concentrations found at SPO, it is unlikely they can explain the large increase found in the CO concentrations in ice core data. Confirmation of the CO ice core data would therefore call for radical new thinking about causes of variable global fire rates over recent centuries.



MAUSAM ◽  
2021 ◽  
Vol 62 (4) ◽  
pp. 665-672
Author(s):  
MELOTH THAMBAN ◽  
SUSHANT S.NAIK ◽  
C.M. LALURAJ ◽  
R. RAVINDRA

In-situ observational record of Antarctic surface temperatures is rather sparse. Proxy based ice core studies are thus critical for reconstructing the past climate change on centennial and decadal time scales. The present study review the available instrumental and proxy records from the Dronning Maud Land region of East Antarctica as well as report recent evidences of Antarctic climate change and its global linkages. The monthly mean air temperature records of the Novolazarevskaya (Novo) station, which is the longest (since 1961) and continuous meteorological record in this region, revealed a significant warming trend at a rate of 0.25 °C / decade. To understand the spatial and temporal consistency of this warming, well-dated ice cores from the coastal Dronning Maud Land region were assessed. All proxy records consistently suggest an enhanced warming up to +0.12 °C / decade. This is further supported by a recent assessment of stable oxygen and hydrogen isotope proxy records from two high resolution ice cores (IND-25/B5 and IND-22/B4) from this region. Among these records, the IND-25/B5 provided ultra-high-resolution data for the past 100 years (1905-2005) and the IND-22/B4 core represented the past ~470 years (1530-2002) of Antarctic change. These ice records provided insights on the influence of solar forcing on Antarctic climate system as well as its linkages with the tropical and mid-latitude climatic modes like the Southern Annular Mode (SAM) and El Niño Southern Oscillation (ENSO). The calculated surface air temperatures using these records showed a warming by 0.06-0.1 °C / decade, with greatly enhanced warming during the past several decades (~0.4 °C / decade). It is confirmed that the coastal areas of Dronning Maud Land are indeed warming and the trend is apparently enhancing in the recent decades.



2013 ◽  
Vol 9 (2) ◽  
pp. 597-604 ◽  
Author(s):  
P. Vallelonga ◽  
C. Barbante ◽  
G. Cozzi ◽  
J. Gabrieli ◽  
S. Schüpbach ◽  
...  

Abstract. Atmospheric fluxes of iron (Fe) over the past 200 kyr are reported for the coastal Antarctic Talos Dome ice core, based on acid leachable Fe concentrations. Fluxes of Fe to Talos Dome were consistently greater than those at Dome C, with the greatest difference observed during interglacial climates. We observe different Fe flux trends at Dome C and Talos Dome during the deglaciation and early Holocene, attributed to a combination of deglacial activation of dust sources local to Talos Dome and the reorganisation of atmospheric transport pathways with the retreat of the Ross Sea ice shelf. This supports similar findings based on dust particle sizes and fluxes and Rare Earth Element fluxes. We show that Ca and Fe should not be used as quantitative proxies for mineral dust, as they all demonstrate different deglacial trends at Talos Dome and Dome C. Considering that a 20 ppmv decrease in atmospheric CO2 at the coldest part of the last glacial maximum occurs contemporaneously with the period of greatest Fe and dust flux to Antarctica, we confirm that the maximum contribution of aeolian dust deposition to Southern Ocean sequestration of atmospheric CO2 is approximately 20 ppmv.



2011 ◽  
Vol 7 (4) ◽  
pp. 1459-1469 ◽  
Author(s):  
R. S. W. van de Wal ◽  
B. de Boer ◽  
L. J. Lourens ◽  
P. Köhler ◽  
R. Bintanja

Abstract. The gradual cooling of the climate during the Cenozoic has generally been attributed to a decrease in CO2 concentration in the atmosphere. The lack of transient climate models and, in particular, the lack of high-resolution proxy records of CO2, beyond the ice-core record prohibit, however, a full understanding of, for example, the inception of the Northern Hemisphere glaciation and mid-Pleistocene transition. Here we elaborate on an inverse modelling technique to reconstruct a continuous CO2 series over the past 20 million year (Myr), by decomposing the global deep-sea benthic δ18O record into a mutually consistent temperature and sea level record, using a set of 1-D models of the major Northern and Southern Hemisphere ice sheets. We subsequently compared the modelled temperature record with ice core and proxy-derived CO2 data to create a continuous CO2 reconstruction over the past 20 Myr. Results show a gradual decline from 450 ppmv around 15 Myr ago to 225 ppmv for mean conditions of the glacial-interglacial cycles of the last 1 Myr, coinciding with a gradual cooling of the global surface temperature of 10 K. Between 13 to 3 Myr ago there is no long-term sea level variation caused by ice-volume changes. We find no evidence of change in the long-term relation between temperature change and CO2, other than the effect following the saturation of the absorption bands for CO2. The reconstructed CO2 record shows that the Northern Hemisphere glaciation starts once the long-term average CO2 concentration drops below 265 ppmv after a period of strong decrease in CO2. Finally, only a small long-term decline of 23 ppmv is found during the mid-Pleistocene transition, constraining theories on this major transition in the climate system. The approach is not accurate enough to revise current ideas about climate sensitivity.



2021 ◽  
Vol 9 ◽  
Author(s):  
Chao Huang ◽  
Deming Kong ◽  
Fajin Chen ◽  
Jianfang Hu ◽  
Peng Wang ◽  
...  

Abrupt climatic events and the history of human activities on Hainan Island are poorly understood, due to the lack of high-resolution records. We present high-resolution multiproxy records from the coastal shelf off eastern Hainan Island in China to investigate abrupt climate change and regional human–environment interaction over the last 7,000 years. A prominent climatic anomaly occurred during 5,400–4,900 cal yr BP. This abrupt monsoon failure has been detected in various paleoclimatic records from monsoonal regions. Anomalous summer monsoon intensity during 5,400–4,900 cal yr BP is probably driven by solar variability, ENSO activity and ice-rafting events in the North Atlantic. Over the past 1,500 years, with the growing population and progress in production technology, human activity has increasingly become the dominant factor controlling the natural environment of Hainan Island.



2020 ◽  
Author(s):  
Elena Di Stefano ◽  
Giovanni Baccolo ◽  
Paolo Gabrielli ◽  
Aja Ellis ◽  
Barbara Delmonte ◽  
...  

<p>Deposition of dust on the Antarctic continent is controlled by many factors, such as the primary supply of dust particles from the continents [1], the long range transport, the hydrological cycle and the snow accumulation rate [2, 3]. Thus, the study of mineral dust in ice cores gives the possibility to reconstruct past climatic and environmental conditions.</p><p>Generally, when an ice core sample is melted, soluble elements dissolve in water, while insoluble elements remain in the solid phase. Other elements, such as iron, calcium, potassium and sulfur, typically partition between the soluble and the insoluble fractions. However recent studies have shown how the dust record may be chemically and physically altered in deep ice cores [4, 5], posing a challenge in the interpretation of the climatic signal that may lie within such samples. In particular, relative abundance of specific elements was shown to be different when comparing shallow and deep dust samples, suggesting that post depositional processes are taking place.</p><p>In this study we present a comparison between samples belonging to the Talos Dome ice core analyzed through two different techniques: instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS). While the former is used to investigate only the insoluble fraction of dust, as it can only be applied to solid samples, the latter is used to assess the elemental composition of both the total and the soluble fraction of dust. We determined 45 elements through ICP-MS and 39 through INAA, with a good overlapping of the elements between the two techniques. Besides the determination of major elements, the high sensibility of both techniques also permitted the determination of trace elements. Among these, rare earth elements (REE) are of particular importance as they have been widely used as a geochemical tracer of aeolian dust sources [6]. We here present depth profiles for each analysed element, covering discrete portions of the entire ice core.</p><p> </p><p>Bibliography</p><p>[1] Petit, Jean-Robert, et al. "Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica." Nature 399.6735 (1999): 429-436.</p><p>[2] Lambert, Fabrice, et al. "Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core." Nature 452.7187 (2008): 616.</p><p>[3] Wegner, Anna, et al. "The role of seasonality of mineral dust concentration and size on glacial/interglacial dust changes in the EPICA Dronning Maud Land ice core." Journal of Geophysical Research: Atmospheres 120.19 (2015): 9916-9931.</p><p>[4] Baccolo, Giovanni, et al. “The contribution of synchrotron light for the characterization of atmospheric mineral dust in deep ice cores: Preliminary results from the Talos Dome ice core (East Antarctica).” Condensed Matter 3, no. 3 (2018): 25.</p><p>[5] De Angelis, Martine, et al. “Micro-investigation of EPICA Dome C bottom ice: Evidence of long term in situ processes involving acid-salt interactions, mineral dust, and organic matter.” Quaternary Science Reviews 78 (2013): 248-265.</p><p>[6] Gabrielli, Paolo, et al. “A major glacial-interglacial change in aeolian dust composition inferred from Rare Earth Elements in Antarctic ice.” Quaternary Science Reviews 29, no. 1-2 (2010): 265-273.</p><p><strong> </strong></p>



Sign in / Sign up

Export Citation Format

Share Document