Differential Integrin Expression Facilitates Isolation of Human Fetal Pancreatic Epithelial Cells

1994 ◽  
Vol 3 (4) ◽  
pp. 307-313 ◽  
Author(s):  
Fred Levine ◽  
Gillian M. Beattie ◽  
Alberto Hayek

We have studied the expression of the β1 family of integrins in fetal and adult human pancreas. Immunohistochemical staining with a monoclonal anti-β1 antibody revealed that the epithelial cells of the human fetal pancreas express high amounts of β1 integrin, while the pancreatic stromal cells express substantially lower amounts. Islets of Langerhans from human adult pancreas also expressed high amounts of β1 integrin. Taking advantage of the extremely high affinity binding between the invasin protein of Yersinia pseudotuberculosis and many β1 integrins, we have been able to isolate highly enriched populations of fetal pancreatic epithelial cells. Epithelial-enriched cell populations retain the ability to differentiate into mature endocrine cells following transplantation into nude mice.

2004 ◽  
Vol 72 (12) ◽  
pp. 6780-6789 ◽  
Author(s):  
Yvonne Schmid ◽  
Guntram A. Grassl ◽  
Oliver T. Bühler ◽  
Mikael Skurnik ◽  
Ingo B. Autenrieth ◽  
...  

ABSTRACT The major invasive factor of Yersinia enterocolitica, the invasin (Inv) protein, induces proinflammatory host cell responses, including interleukin-8 (IL-8) secretion from human epithelial cells, by engagement of β1 integrins. The Inv-triggered β1 integrin signaling involves the small GTPase Rac; the activation of MAP kinases, such as p38, MEK1, and JNK; and the activation of the transcription factor NF-κB. In the present study, we demonstrate that Y. enterocolitica YadA, which is a major adhesin of Y. enterocolitica with pleiotropic virulence effects, induces IL-8 secretion in epithelial cells. The abilites of YadA and Inv to promote adhesion to and invasion of HeLa cells and to induce IL-8 production by the cells were investigated by expression of YadA and Inv in Escherichia coli. While YadA mediates efficacious adhesion to HeLa cells, it mediates marginal invasion compared with Inv. Both YadA and Inv trigger comparable levels of IL-8 production. Conformational changes of the YadA head domain by mutation of NSVAIG-S motifs, which abolish collagen binding, also abolish adhesion of Yersinia to HeLa cells and YadA-mediated IL-8 secretion. Furthermore, experiments in which blocking antibodies against β1 integrins were used demonstrate that β1 integrins are crucial for YadA-mediated IL-8 secretion. Inhibitor studies demonstrate the involvement of small GTPases and MAP kinases, such as p38, MEK1, and JNK, indicating that β1 integrin-dependent signaling mediated by Inv or YadA involves similar signaling pathways. These data present YadA, in addition to Inv, YopB, and Yersinia lipopolysaccharide, as a further inducer of proinflammatory molecules by which Y. enterocolitica might promote inflammatory tissue reactions.


2002 ◽  
Vol 115 (13) ◽  
pp. 2669-2678 ◽  
Author(s):  
Anna Gustavsson ◽  
Annika Armulik ◽  
Cord Brakebusch ◽  
Reinhard Fässler ◽  
Staffan Johansson ◽  
...  

Invasin of Yersinia pseudotuberculosis binds to β1-integrins on host cells and triggers internalization of the bacterium. To elucidate the mechanism behind the β1-integrin-mediated internalization of Yersinia, a β1-integrin-deficient cell line, GD25, transfected with wild-type β1A, β1B or different mutants of the β1A subunit was used. Both β1A and β1B bound to invasin-expressing bacteria, but only β1A was able to mediate internalization of the bacteria. The cytoplasmic region of β1A, differing from β1B, contains two NPXY motifs surrounding a double threonine site. Exchanging the tyrosines of the two NPXYs to phenylalanines did not inhibit the uptake, whereas a marked reduction was seen when the first tyrosine (Y783) was exchanged to alanine. A similar reduction was seen when the two nearby threonines (TT788-9) were exchanged with alanines. It was also noted that cells affected in bacterial internalization exhibited reduced spreading capability when seeded onto invasin, suggesting a correlation between the internalization of invasin-expressing bacteria and invasin-induced spreading. Likewise, integrins defective in forming peripheral focal complex structures was unable to mediate uptake of invasin-expressing bacteria.


2000 ◽  
Vol 68 (9) ◽  
pp. 5335-5343 ◽  
Author(s):  
Farideh Tafazoli ◽  
Anna Holmström ◽  
Åke Forsberg ◽  
Karl-Eric Magnusson

ABSTRACT Using polarized epithelial cells, primarily MDCK-1, we assessed the mode of binding and effects on epithelial cell structure and permeability of Yersinia pseudotuberculosis yadA-deficient mutants. Initially, all bacteria except the invasin-deficient (inv) mutant adhered apically to the tight junction areas. These contact points of adjacent cells displayed β1-integrins together with tight junction-associated ZO-1 and occludin proteins. Indeed, β1-integrin expression was maximal in the tight junction area and then gradually decreased along the basolateral membranes. Wild-type bacteria also opened gradually the tight junction to paracellular permeation of different-sized markers, viz., 20-, 40-, and 70-kDa dextrans and 45-kDa ovalbumin, as well as to their own translocation between adjacent cells in intimate contact with β1-integrins. The effects on the epithelial cells and their barrier properties could primarily be attributed to expression of the Yersinia outer membrane protein YopE, as the yopE mutant bound but caused no cytotoxicity. Moreover, the apical structure of filamentous actin (F-actin) was disturbed and tight junction-associated proteins (ZO-1 and occludin) were dispersed along the basolateral membranes. It is concluded that the Yersinia bacteria attach to β1-integrins at tight junctions. Via this localized injection of YopE, they perturb the F-actin structure and distribution of proteins forming and regulating tight junctions. Thereby they promote paracellular translocation of bacteria and soluble compounds.


1995 ◽  
Vol 7 (1) ◽  
pp. 27 ◽  
Author(s):  
SC Riley ◽  
E Wong ◽  
JK Findlay ◽  
LA Salamonsen

Neutral endopeptidase (NEP; EC 3.4.24.11), an enzyme which metabolizes several peptides (including oxytocin and endothelins) implicated in the control of uterine function, was found to be localized in the ovine uterus throughout the oestrous cycle and in the uterus and conceptus during early pregnancy, using immunohistochemical techniques. Positive NEP immunoreactivity was found in the endometrium principally in stromal cells, in the vasculature in endothelial and vascular smooth muscle cells, and also weakly in some glandular epithelial cells. In a layer of stromal fibroblasts several cells in thickness underlying the luminal epithelium, staining was much weaker than that in the deeper stromal cells throughout the period examined. NEP staining was also present in smooth muscle cells of the myometrium at all times, and was most intense in the layer of cells adjacent to the endometrium. In the conceptus, NEP immunohistochemical staining was found in uninucleate cells, but not in binucleate trophoblast cells, in epithelial cells of the allantois and amnion, and in the heart and brain of the Day-20 embryo. In ovariectomized ewes treated with oestrogen or progesterone separately or remaining untreated, immunohistochemical staining of NEP was stronger when compared with intact ewes, in caruncular and intercaruncular stroma and epithelia, in glands, in the vasculature and in myometrium. The staining was less intense in all cell types in ewes receiving oestrogen plus progesterone. The expression of NEP and its specific regionalization within the uterus indicate a mechanism by which the availability of biologically important peptides involved in the regulation of the oestrous cycle and implantation, including oxytocin and endothelin, can be controlled by regulation of their metabolism.


1993 ◽  
Vol 13 (8) ◽  
pp. 4513-4522 ◽  
Author(s):  
G Yan ◽  
Y Fukabori ◽  
G McBride ◽  
S Nikolaropolous ◽  
W L McKeehan

Stroma and the heparin-binding fibroblast growth factor (FGF) family influence normal epithelial cell growth and differentiation in embryonic and adult tissues. The role of stromal cells and the expression of isoforms of the FGF ligand and receptor family were examined during malignant progression of epithelial cells from a differentiated, slowly growing, nonmalignant model rat prostate tumor. In syngeneic hosts, a mixture of stromal and epithelial cells resulted in nonmalignant tumors which were differentiated and slowly growing. In the absence of the stromal cells, epithelial cells progressed to malignant tumors which were independent of the stroma and undifferentiated. The independence of the malignant epithelial cells from stromal cells was accompanied by a switch from exclusive expression of exon IIIb to exclusive expression of exon IIIc in the FGF receptor 2 (FGF-R2) gene. The FGF-R2(IIIb) isoform displays high affinity for stromal cell-derived FGF-7, whereas the FGF-R2(IIIc) isoform does not recognize FGF-7 but has high affinity for the FGF-2 member of the FGF ligand family. The switch from expression of exclusively exon IIIb to exclusively exon IIIc in the resident FGF-R2 gene was followed by activation of the FGF-2 ligand gene, the normally stromal cell FGF-R1 gene, and embryonic FGF-3 and FGF-5 ligand genes in malignant epithelial cells. Multiple autocrine and potentially intracrine ligand-receptor loops resulting from these alterations within the FGF-FGF-R family may underlie the autonomy of malignant tumor cells.


Metabolism ◽  
1986 ◽  
Vol 35 (7) ◽  
pp. 588-595 ◽  
Author(s):  
D.D. Sviridov ◽  
I.G. Safonova ◽  
V.A. Gusev ◽  
A.G. Talalaev ◽  
V.P. Tsibulsky ◽  
...  

1993 ◽  
Vol 13 (8) ◽  
pp. 4513-4522
Author(s):  
G Yan ◽  
Y Fukabori ◽  
G McBride ◽  
S Nikolaropolous ◽  
W L McKeehan

Stroma and the heparin-binding fibroblast growth factor (FGF) family influence normal epithelial cell growth and differentiation in embryonic and adult tissues. The role of stromal cells and the expression of isoforms of the FGF ligand and receptor family were examined during malignant progression of epithelial cells from a differentiated, slowly growing, nonmalignant model rat prostate tumor. In syngeneic hosts, a mixture of stromal and epithelial cells resulted in nonmalignant tumors which were differentiated and slowly growing. In the absence of the stromal cells, epithelial cells progressed to malignant tumors which were independent of the stroma and undifferentiated. The independence of the malignant epithelial cells from stromal cells was accompanied by a switch from exclusive expression of exon IIIb to exclusive expression of exon IIIc in the FGF receptor 2 (FGF-R2) gene. The FGF-R2(IIIb) isoform displays high affinity for stromal cell-derived FGF-7, whereas the FGF-R2(IIIc) isoform does not recognize FGF-7 but has high affinity for the FGF-2 member of the FGF ligand family. The switch from expression of exclusively exon IIIb to exclusively exon IIIc in the resident FGF-R2 gene was followed by activation of the FGF-2 ligand gene, the normally stromal cell FGF-R1 gene, and embryonic FGF-3 and FGF-5 ligand genes in malignant epithelial cells. Multiple autocrine and potentially intracrine ligand-receptor loops resulting from these alterations within the FGF-FGF-R family may underlie the autonomy of malignant tumor cells.


2008 ◽  
Vol 69 (3) ◽  
pp. 400-406 ◽  
Author(s):  
Hai-Lu Zhao ◽  
Yi Sui ◽  
Jing Guan ◽  
Fernand M. M. Lai ◽  
Xue-Mei Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document