Present Status and Key Challenges of Carbon Nanotubes Reinforced Polyolefins: A Review on Nanocomposites Manufacturing and Performance Issues

2009 ◽  
Vol 17 (4) ◽  
pp. 205-245 ◽  
Author(s):  
K. Prashantha ◽  
J. Soulestin ◽  
M.F. Lacrampe ◽  
P. Krawczak

Carbon nanotube reinforcement is a key emerging technology to simultaneously impart enhanced mechanical properties while adding multifunctional characteristics to polymer materials and systems. The promise of extraordinary improvement in-end use properties of polyolefin/carbon nanotube hybrid systems has spurred great interest and intensive activity in academics and industries. This review offers a comprehensive discussion of the preparation, compounding, properties and applications of such nanocomposites. The processing, dispersion and orientation of nanotubes, as well as the characterisation of physical and mechanical properties of carbon nanotube filled polyolefins are discussed. In particular the scientific principles and mechanisms in relation to the methods of manufacturing are highlighted, with an outlook towards commercial applications.

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4284
Author(s):  
Lvtao Zhu ◽  
Mahfuz Bin Rahman ◽  
Zhenxing Wang

Three-dimensional integrated woven spacer sandwich composites have been widely used as industrial textiles for many applications due to their superior physical and mechanical properties. In this research, 3D integrated woven spacer sandwich composites of five different specifications were produced, and the mechanical properties and performance were investigated under different load conditions. XR-CT (X-ray computed tomography) images were employed to visualize the microstructural details and analyze the fracture morphologies of fractured specimens under different load conditions. In addition, the effects of warp and weft direction, face sheet thickness, and core pile height on the mechanical properties and performance of the composite materials were analyzed. This investigation can provide significant guidance to help determine the structure of composite materials and design new products according to the required mechanical properties.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1163-1166 ◽  
Author(s):  
Petr Kratky ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Martin Ovsik ◽  
...  

Influence of mechanical properties of the hard surface layer of modified polyamide 6 is studied. Mechanical properties are acquired by nanohardness test with using the DSI method (Depth Sensing Indentation). Hard surface layers are created by radiation cross-linking technology. This technology allows polymer materials modification followed by the change of their end-use properties. The surface layer of polymer material is modified by ionizing β - radiation. When the polymer material is exposed to the β radiation, it is possible to observe changes of the surface layer at applied load. Radiation cross-linking usually improves strength, reduces creep, contributes to chemical resistance improvement, and in many cases improves tribological properties.


2012 ◽  
Vol 627 ◽  
pp. 85-89 ◽  
Author(s):  
Hai Xia Zhang ◽  
Xi Chang Zhang

To analyze the structure and performance of Outlast acrylic fiber, the fiber structure was observed respectively by FTIR spectra, X-ray diffraction and scanning electron microscope, the normal physical and mechanical properties were measured, and the thermo-regulated performance was investigated by differential scanning calorimeter, thermal gravimeter analysis and step cooling test. The results indicate that the structure and normal physical and mechanical properties of Outlast acrylic fiber are slightly different from that of normal acrylic fiber. Both the melting peak and crystallization peak of Outlast acrylic fiber are single peaks, and the phase change temperature range is applicable and the phase change enthalpy is high. The decomposition temperature of Outlast acrylic fiber is around 311.85°C. The cooling velocity of Outlast acrylic fiber decreases exponentially with the increase in time, and the thermo-regulated ability of Outlast acrylic fiber is better than that of normal acrylic fiber.


Author(s):  
Kseniya A. Timakova ◽  
Yury T. Panov

In this study, the effects of fillers on the technological properties of polyurethane sealants and the physical and mechanical properties of air moisture curing sealants are investigated. The sequence of loading the components in the dissolver, factoring in the presence of a latent curing agent, is demonstrated. It was found that when filling within 20-80 parts weight per 100 parts weight of the pre-polymer, the general complex of physical and mechanical properties remains high. With the introduction of mineral dispersed filler, the tear strength increases, but the relative elongation at break decreases. The increase in the tensile strength occurs up to a certain limit, after which there is a decrease in the strength of the sealant. It was shown that based on the oil absorption value of the fillers, the type and the amount of a filler for the sealant can be evaluated, as oil absorption directly depends on the particle size, surface area and particle shape of the filler. It was observed that for maintaining high physical and mechanical properties of the composite and the optimum viscosity of the sealant, it is preferable to combine two kinds of fillers with different oil absorption. It was established that the application of fillers with high and low oil absorption has a positive effect on the technological and performance properties of sealants. The filler with high oil absorption contributes to the thixotropy of the sealant, while the filler with low oil absorption allows to form a more highly filled composite while preserving the high strength characteristics.


Sign in / Sign up

Export Citation Format

Share Document