Preparation and characterizations of SiCw/SEBS-g-MAH composite film

2019 ◽  
Vol 27 (7) ◽  
pp. 383-388 ◽  
Author(s):  
Xiaoyan Pang ◽  
Weijie Liang ◽  
Xin Ge ◽  
Jianye Ji ◽  
Zhoujie Li ◽  
...  

Silicon carbide whiskers (SiCws) were modified with silane coupling reagent with the aid of ultrasonic agitation, and SiCw/SEBS (styrene-ethylene-butadiene-styrene) grafted with maleic anhydride(SEBS- g-MAH) composites were prepared by a solution method. The effects of modification on the SiCw and the structure morphology, mechanical property, thermal stability, and hydrophobicity of composites were studied. The results show that the tensile strength of composites increased gradually with increasing filler contents, ranging from 19.05 to 24.91 MPa. The pyrolysis temperature of composites to begin to lose mass increased gradually. Comparing with the pure SEBS- g-MAH film beginning to lose mass at 365°C, the composite with 2.5% modified SiCw lost mass at 402°C, which had improved by 37°C. With increasing content of SiCw, the hydrophobicity of composite was enhanced. Compared with the pure SEBS- g-MAH film, the water contact angle of composite with 2.5% SiCw had been enlarged by 40%, from 65.56° to 91.57°.

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2254
Author(s):  
Adeleke A. Oyekanmi ◽  
N. I. Saharudin ◽  
Che Mohamad Hazwan ◽  
Abdul Khalil H. P. S. ◽  
Niyi G. Olaiya ◽  
...  

Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films’ modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.


2014 ◽  
Vol 599-601 ◽  
pp. 183-186
Author(s):  
Zhang Ting Li ◽  
Yue Qun Lu ◽  
Li Li Fan ◽  
Pei Bang Dai ◽  
Xia Su ◽  
...  

For achieving sufficient flame retardancy, high magnesim hydroxide (MH) content is needed in MH flame retardant Acrylonitrile-butadiene-styrene copolymer (ABS) composites (ABS/MH), which will cause a great decrease in mechanical property and difficulty in preparing samples for measurement. We prepared ABS/MH filled high 60.0% flame retardant by compounding ABS and modified flame retardant MH, fumed silica (SiO2) and zinc borate (ZB) via TX-10 phosphate/polyacrylate latex and studied the effect of a small amount of SiO2 and ZB with MH in ABS for improving the thermal decomposition of ABS/MH. The thermal stability of the modified flame retardant could meet the processing temperature of ABS. The incorporation of ZB, SiO2 or SiO2/ZB could improve the thermal stability of ABS/MH.


2008 ◽  
Vol 59 (9) ◽  
Author(s):  
Daniel I. Hadaruga ◽  
Nicoleta G. Hadaruga ◽  
Anca Hermenean ◽  
Adrian Rivis ◽  
Vasile Paslaru ◽  
...  

This paper presents the thermal stability of the oleic acid encapsulated in a- and b - cyclodextrin. The complexation of the oleic acid was achieved by the ethanol-water solution method and the nanoparticles were analyzed by DSC. The free oleic acid and the encapsulated one were subjected to the thermal degradation in the range of 50-150�C and the degradation products were identified and quantified by GC-MS analysis of the fatty acid esters obtained by deriving with methanol/boron trifluoride, both for free compounds and for the encapsulated ones. The oleic acid complexes were very stable in this range of temperature.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 673-681
Author(s):  
Yanchao Qiao ◽  
Lijie Duan

AbstractAntibacterial materials have found widespread interest in different fields nowadays. In this study, curcumin (Cur) was incorporated into the polyvinyl butyral (PVB) matrix by dissolving in ethanol for improving the functional properties of a pure PVB film. We found that Cur was uniformly dispersed in the PVB matrix, which showed good compatibility. Moreover, the incorporation of Cur could also improve thermal stability, hydrophilicity, and mechanical property. The UV-vis spectra of the PVB–Cur film demonstrated that the film could block ultraviolet radiation. Subsequently, the antibacterial activity of the PVB–Cur film was measured by the colony-counting method against S. aureus and E. coli. The results showed that the PVB–Cur film exhibited good antibacterial activity. Therefore, the PVB–Cur film was considered as a promising material for food and medical packaging applications.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1654
Author(s):  
Bo Wang ◽  
Shuangdan Mao ◽  
Fuhua Lin ◽  
Mi Zhang ◽  
Yuying Zhao ◽  
...  

Isotactic poly (1-butene) (iPB) has excellent properties which are recognized as a green and energy saving product. However, the most stable and valuable crystal form I had a spontaneous transformation that took as long as seven days to complete. As a special solid waste, the herb residue (HR) is rich in cellulose which has great potential to accelerate the crystal transformation of the iPB. However, the polarity of HR results in the interface compatibility with non-polar iPB. In this study, the HR was modified by silane coupling agent (KH570) to obtain KHR and the iPB/HR composite was prepared. The FTIR spectrum was indicated that the organic functional groups of KH570 successfully graft onto the surface of HR and the water contact angle test was indicated that the hydrophilicity of the KHR was greatly decreased. The complete crystal transformation time is 7 days for iPB, 6 days for iPB+5% HR but only 3 days for iPB+5% KHR. The addition of the HR and KHR improve the thermal stability of the composite and this beneficial effect is more obvious for KHR. After annealing for 5 days, the physical properties value include tensile strength, flexural strength, and HDT of iPB+5% HR reach that of pure iPB after annealing for 7 days, but only 3 days for iPB+5% KHR. The TG analysis and SEM photographs give clear evidence that the beneficial effect of KH570 modified HR on improving the interface compatibility with iPB.


2019 ◽  
Vol 32 (6) ◽  
pp. 611-619 ◽  
Author(s):  
Xiaoli Liu ◽  
Zhen Ge ◽  
Wenguo Zhang ◽  
Yunjun Luo

Due to their unique physicochemical properties, polysilazanes exhibit excellent performance when combined with some resin matrixes, which had drawn great research attention. In this article, polyurethane (PU) was firstly prepared by polytetrahydrofuran glycol, isophorone diisocyanate, and 1,4-butanediol as main materials. Then, the prepared PU was blended with polysilazane by mixing the two solutions together, which was cured to films via dip-coating method at room temperature. The structure, thermal stability, and surface properties of the composite coatings were investigated by Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. The results demonstrated that after modification with polysilazane, the heat resistance, hydrophobicity, and mechanical property of the PU coatings were improved. When the content of polysilazane was 6 wt%, the mechanical property of the composite films was optimized, with a maximum tensile strength of 25.7 MPa and elongation at break of 797%. Meanwhile, the water contact angle of the composite film was 107° and the water absorption reached a minimum of 2.1%, which showed improved hydrophobicity and water resistance.


Sign in / Sign up

Export Citation Format

Share Document