scholarly journals Characterization of epididymal and testicular histologic lesions and use of immunohistochemistry and PCR on formalin-fixed tissues to detect Brucella canis in male dogs

2021 ◽  
pp. 104063872098688
Author(s):  
Andrea M. Camargo-Castañeda ◽  
Lauren W. Stranahan ◽  
John F. Edwards ◽  
Daniel G. Garcia-Gonzalez ◽  
Leonardo Roa ◽  
...  

In male dogs, Brucella canis frequently causes epididymitis, ultimately resulting in testicular atrophy and infertility. Although B. canis predominantly affects the epididymis, the misleading term “orchitis” is still commonly used by clinicians. Of additional concern, diagnosis in dogs remains challenging because of variable sensitivity and specificity of serologic assays and fluctuations in bacteremia levels in infected dogs, reducing the sensitivity of blood culture. We describe here the histologic lesions in the scrotal contents of 8 dogs suspected of being infected with B. canis and clinically diagnosed with orchitis. We explored the possibility of using immunohistochemistry (IHC) and real-time PCR (rtPCR) in formalin-fixed, paraffin-embedded (FFPE) tissues to detect the presence of B. canis. Epididymitis of variable chronicity was identified in all 8 dogs, with only 3 also exhibiting orchitis. Using rtPCR, the presence of B. canis was identified in 4 of 8 dogs, with 3 of these 4 dogs also positive by IHC. These results suggest that rtPCR and IHC are promising techniques that can be used in FFPE tissues to detect B. canis when other detection techniques are unavailable. Additionally, accurate recognition of epididymitis rather than orchitis in suspect cases could aid in accurate diagnosis.

2018 ◽  
Vol 22 (3) ◽  
pp. 205-213 ◽  
Author(s):  
Javal Sheth ◽  
Anthony Arnoldo ◽  
Yunan Zhong ◽  
Paula Marrano ◽  
Carlos Pereira ◽  
...  

Background NanoString technology is an innovative barcode-based system that requires less tissue than traditional techniques and can test for multiple fusion transcripts in a single reaction. The objective of this study was to determine the utility of NanoString technology in the detection of sarcoma-specific fusion transcripts in pediatric sarcomas. Design Probe pairs for the most common pediatric sarcoma fusion transcripts were designed for the assay. The NanoString assay was used to test 22 specific fusion transcripts in 45 sarcoma samples that had exhibited one of these fusion genes previously by reverse transcription polymerase chain reaction (RT-PCR). A mixture of frozen (n = 18), formalin-fixed, paraffin-embedded (FFPE) tissue (n = 23), and rapid extract template (n = 4) were used for testing. Results Each of the 22 transcripts tested was detected in at least one of the 45 tumor samples. The results of the NanoString assay were 100% concordant with the previous RT-PCR results for the tumor samples, and the technique was successful using both FFPE and rapid extract method. Conclusion Multiplexed interrogation for sarcoma-specific fusion transcripts using NanoString technology is a reliable approach for molecular diagnosis of pediatric sarcomas and works well with FFPE tissues. Future work will involve validating additional sarcoma fusion transcripts as well as determining the optimal workflow for diagnostic purposes.


2020 ◽  
pp. mcp.TIR120.002216
Author(s):  
Daniel J. Geiszler ◽  
Andy T. Kong ◽  
Dmitry M Avtonomov ◽  
Fengchao Yu ◽  
Felipe da Veiga Leprevost ◽  
...  

Open searching has proven to be an effective strategy for identifying both known and unknown modifications in shotgun proteomics experiments. Rather than being limited to a small set of user-specified modifications, open searches identify peptides with any mass shift that may correspond to a single modification or a combination of several modifications. Here we present PTM-Shepherd, a bioinformatics tool that automates characterization of PTM profiles detected in open searches based on attributes such as amino acid localization, fragmentation spectra similarity, retention time shifts, and relative modification rates. PTM-Shepherd can also perform multi-experiment comparisons for studying changes in modification profiles, e.g. in data generated in different laboratories or under different conditions. We demonstrate how PTM-Shepherd improves the analysis of data from formalin-fixed paraffin-embedded samples, detects extreme underalkylation of cysteine in some datasets, discovers an artefactual modification introduced during peptide synthesis, and uncovers site-specific biases in sample preparation artifacts in a multi-center proteomics profiling study.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Tamara Sequeiros ◽  
Marta García ◽  
Melania Montes ◽  
Mireia Oliván ◽  
Marina Rigau ◽  
...  

Prostate cancer (PCa) is the most frequently diagnosed type of cancer in developed countries. The decisive method of diagnosis is based on the results of biopsies, morphologically evaluated to determine the presence or absence of cancer. Although this approach leads to a confident diagnosis in most cases, it can be improved by using the molecular markers present in the tissue. Both miRNAs and proteins are considered excellent candidates for biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues, due to their stability over long periods of time. In the last few years, a concerted effort has been made to develop the necessary tools for their reliable measurement in these types of samples. Furthermore, the use of these kinds of markers may also help in establishing tumor grade and aggressiveness, as well as predicting the possible outcomes in each particular case for the different treatments available. This would aid clinicians in the decision-making process. In this review, we attempt to summarize and discuss the potential use of microRNA and protein profiles in FFPE tissue samples as markers to better predict PCa diagnosis, progression, and response to therapy.


2020 ◽  
pp. 030098582097178
Author(s):  
Llorenç Grau-Roma ◽  
Mauricio Navarro ◽  
Sohvi Blatter ◽  
Christian Wenker ◽  
Sonja Kittl ◽  
...  

Several outbreaks of necrotic enteritis-like disease in lorikeets, from which Clostridium perfringens was consistently isolated, are described. All lorikeets had acute, segmental, or multifocal fibrinonecrotizing inflammatory lesions in the small and/or the large intestine, with intralesional gram-positive rods. The gene encoding C. perfringens alpha toxin was detected by PCR (polymerase chain reaction) on formalin-fixed, paraffin-embedded (FFPE) tissues in 20 out of 24 affected lorikeets (83%), but it was not amplified from samples of any of 10 control lorikeets ( P < .0001). The second most prevalent C. perfringens toxin gene detected was the beta toxin gene, which was found in FFPE from 7 out of 24 affected lorikeets (29%). The other toxin genes were detected inconsistently and in a relatively low number of samples. These cases seem to be associated with C. perfringens, although the specific type involved could not be determined.


2015 ◽  
Vol 53 (5) ◽  
pp. 520-527 ◽  
Author(s):  
Cristina E. Canteros ◽  
Alejandro Vélez H. ◽  
Adriana I. Toranzo ◽  
Roberto Suárez-Alvarez ◽  
Ángela Tobón O. ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 620-620
Author(s):  
Lisa M. Rimsza ◽  
George Wright ◽  
Mark Schwartz ◽  
Wing C. Chan ◽  
Elaine S Jaffe ◽  
...  

Abstract Abstract 620 Classification of DLBCL into cell-of-origin (COO) subtypes based on gene expression profiles has well-established prognostic value. These subtypes, termed Germinal Center B cell (GCB) and Activated B cell (ABC) also have different genetic alterations and over-expression of different pathways that may serve as therapeutic targets. Thus, accurate classification is essential for analysis of clinical trial results and planning new trials using targeted agents. The gold standard for COO classification uses gene expression profiling (GEP) of snap frozen tissues, and a Bayesian predictor algorithm utilizing the expression levels of 14 key genes (G. Wright et al PNAS 2003). An immunohistochemistry (IHC) classification scheme by C. Hans et al (Blood 2004), based on 3 antibodies, is widely used as a substitute for GEP classification, however does not completely correlate with GEP. We recently described a qNPA assay (ArrayPlateR, High ThroughPut Genomics, Tucson, AZ) with excellent correlation between frozen and formalin fixed paraffin embedded (FFPE) tissues (R. Roberts et al, Lab Invest 2007). In this study, we investigated whether this technique could be used for accurate classification of COO using FFPE tissues. We expanded the previous gene probe repertoire of the DLBCL-ArrayPlateR assay to include the 14 genes (represented by 17 probe sets) most pertinent to COO classification. 52 cases of R-CHOP treated DLBCL that had undergone GEP using the Affymetrix U133 Plus 2.0 microarray and had matching FFPE blocks were analyzed with qNPA in duplicate. The genes included CD10, LRMP, CCND2, ITPKB, PIM1, IL16, IRF4, FUT8, BCL6, PTPN1, LM02, CD39, MYBL1, IGHM. Results were evaluated using the previously published algorithm with a leave-one-out cross validation scheme to classify cases into GCB or ABC subtypes. These results were compared to COO classification based on frozen tissue GEP profiles. All 14 genes in all 52 cases were successfully analyzed with no missing data points. For each case, a probability statistic was generated indicating the likelihood that the classification using qNPA was accurate. Of the 54 cases, 25 were GCB, 27 were ABC and 4 were unclassifiable by GEP. Of the GCB cases, 23/25 (92%) were classified correctly by qNPA with a confidence cut-off of >0.9 and 25/25 (100%) classified correctly with a confidence cut-off of >0.8. Of the ABC cases, 25/27 (93%) were correctly classified as ABC using qNPA with a confidence cut-off of >0.9 and 27/27 (100%) classified correctly with a confidence cut-off of >0.8. In summary, the qNPA technique accurately categorized DLBCL into GCB and ABC subtypes, as defined by GEP. There were no technical difficulties with any of the pathological materials although they were collected retrospectively from a variety of institutions and countries with different fixation methods. This approach represents a substantial improvement over previously published IHC methods and is applicable to FFPE tissues, therefore overcoming the need for snap frozen materials. This technically robust classification method has potential to have a significant impact on future DLBCL research and clinical trial development. Disclosures: Rimsza: High Throughput Genomics: HTG provided the assays at no charge to Dr. Rimsza's lab. Schwartz:High Throughput Genomics: Employment. Gascoyne:Roche Canada: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document