A novel scissor-type magnetorheological seat suspension system with self-sustainability

2018 ◽  
Vol 30 (5) ◽  
pp. 665-676 ◽  
Author(s):  
Jianqiang Yu ◽  
Xiaomin Dong ◽  
Zonglun Zhang ◽  
Pinggen Chen

A novel scissor-type magnetorheological seat suspension with self-sustainability which integrated self-powered, self-sensing, and self-adaptability is proposed in this study. The adaptive rotary damping system consisted of the rotary magnetorheological damper, and rotary permanent magnet direct current generator is designed to realize the self-sustainability. Effects of damping force and isolation object mass are analyzed for further designing and testing based on the dynamic model. The rotary magnetorheological damper and the electrical part are designed and analyzed theoretically. Series of experimental tests are conducted to verify the feasibility and control performances. The experimental results show that the on–off balance control algorithm based on the self-sensing signals can improve the comfort than the directly and supply-with-rectifier control modes.

Author(s):  
Jianqiang Yu ◽  
Xiaomin Dong ◽  
Xuhong Wang ◽  
Junli Li ◽  
Biao Li

This research investigates the design, modeling, and control of an improved magnetorheological rotary damper for seat suspension. A magnetorheological damper with optimized flux path is developed to improve the distribution of magnetic field. Its dynamic damping characteristics are tested by MTS machine under sinusoidal excitations. To describe the nonlinear damping characteristics of magnetorheological damper, a hysteretic model based on backbone curve is selected by comparing with other models. To verify the feasibility of seat suspension with the proposed magnetorheological damper, the simulated analysis and experimental tests are conducted. A dynamic model of scissor seat suspension with rotary damper is constructed and simplified. The performances of semi-active system show that the seat suspension with the proposed damper can reduce vibration efficiently.


Author(s):  
Chao Chen ◽  
Yu Shing Chan ◽  
Li Zou ◽  
Wei-Hsin Liao

Dampers are the parts of suspensions which improve the ride comfort and the safety of vehicles including motorcycles. Magnetorheological dampers are very attractive for motorcycle suspensions, because of their controllable properties and their fast responses. Considerable energy is wasted owing to the energy dissipation by dampers encountering road irregularities and accelerating processes during everyday use of motorcycles. In addition, the current magnetorheological suspension systems depend on the power supply of batteries. Therefore, in this paper, a self-powered magnetorheological damper for motorcycle suspensions is proposed and implemented for the first time. It can convert the wasted mechanical energy into useful electrical energy to power itself. There are great merits in this such as energy saving, independence of extra batteries and less maintenance in comparison with conventional magnetorheological suspension systems, while keeping controllable performances. A customized prototype of the self-powered magnetorheological damper that is compatible with a motorcycle is developed and actually implemented in a motorcycle. Modelling for the self-powered magnetorheological damper is developed and validated by laboratory testing. Laboratory testing showed that the self-powered feature works well to generate the electrical power and to vary the magnetorheological damping force. Preliminary system-level testing showed that a self-powered magnetorheological suspension results in a better ride comfort, compared with that of a magnetorheological suspension without power generation. The results showed that implementing self-powered magnetorheological dampers in motorcycle suspensions is feasible and beneficial.


Author(s):  
Wendong Wang ◽  
Xing Ming ◽  
Yang Chu ◽  
Minghui Liu ◽  
Yikai Shi

To restrain the interference of micro-vibration caused by Control Moment Gyroscope, a new control method based on Magnetorheological damper was proposed in this paper. A mechanical model based on the structure of the presented design was built, and the semi-active control algorithm of damping force was proposed for the designed Magnetorheological damper. The magnetic flux density and other magnetic field parameters were considered and analyzed in Maxwell, and also the related hardware circuit which implements the control algorithm was prepared to test the presented design and algorithm. The results of simulation and experiments show that the presented Magnetorheological damper model and semi-active control algorithm can complete the requirements, and the vibration suppression method is efficient for Control Moment Gyroscope.


2004 ◽  
Vol 126 (4) ◽  
pp. 580-584 ◽  
Author(s):  
Mehdi Ahmadian ◽  
Xubin Song ◽  
Steve C. Southward

This paper presents two alternative implementations of skyhook control, named “skyhook function” and “no-jerk skyhook,” for reducing the dynamic jerk that is often experienced with conventional skyhook control in semiactive suspension systems. An analysis of the relationship between the absolute velocity of the sprung mass and the relative velocity across the suspension are used to show the damping-force discontinuities that result from the conventional implementation of skyhook control. This analysis shows that at zero crossings of the relative velocity, conventional skyhook introduces a sharp increase (jump) in damping force, which, in turn, causes a jump in sprung-mass acceleration. This acceleration jump, or jerk, causes a significant reduction in isolation benefits that can be offered by skyhook suspensions. The alternative implementations of skyhook control included in this study offer modifications to the formulation of conventional skyhook control such that the damping force jumps are eliminated. The alternative policies are compared to the conventional skyhook control in the laboratory, using a base-excited semiactive system that includes a heavy-truck seat suspension. An evaluation of the damping force, seat acceleration, and the electrical currents supplied to a magnetorheological damper, which is used for this study, shows that the alternative implementations of skyhook control can entirely eliminate the damping-force discontinuities and the resulting dynamic jerks caused by conventional skyhook control.


Author(s):  
Kwangjin Han ◽  
Kunsoo Huh ◽  
Jaehyung Chun ◽  
Myoungjune Kim ◽  
Joogon Kim

Brake-by-wire (BBW) systems can be used for enhanced safety braking of intelligent vehicles and also for environmentally friendly vehicles such as hybrid electric vehicles (HEVs) and electric vehicles (EVs). The electronic wedge brake (EWB) is one of the brake-by-wire systems with a self-energizing effect. The EWB is faster than the conventional hydraulic brake and requires only about one-tenth the power to operate. However, the EWB can be unstable unless controlled properly since the self-energizing effect can unintentionally lock up the vehicle’s wheels. In addition, the self-energizing effect is very sensitive to environment and parametric variances, e.g. friction, temperature, speed, load, etc. In this paper, two control algorithms for the EWB are introduced and compared each other in performance. The performance of the proposed control algorithms is verified in simulations.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Guoliang Hu ◽  
Wei Zhou ◽  
Mingke Liao ◽  
Weihua Li

This paper presents the development of a novel magnetorheological damper (MRD) which has a self-induced ability. In this study, a linear variable differential sensor (LVDS) based on the electromagnetic induction mechanism was integrated with a conventional MRD. The structure of the displacement differential self-induced magnetorheological damper (DDSMRD) was developed, and the theory of displacement differential self-induced performance was deduced. The static experiments of the DDSMRD under different displacement positions were carried out by applying sine excitation signals to the excitation coils, and the experimental results show that the self-induced voltage is proportional to the damper piston displacement. Meanwhile, the dynamic experiments were also carried out using the fatigue test machine to investigate the change of the self-induced voltage under the typical direct current inputs and the different piston rod displacements; the experimental results also show that the self-induced voltage is proportional to the damper piston displacements. Additionally, the dynamic mechanical performance of the DDSMRD was evaluated. The theory deduction and the experimental results indicate that the proposed DDSMRD has the ability of the integrated displacement sensor in addition to the output controllable damping force.


2014 ◽  
Vol 660 ◽  
pp. 863-867
Author(s):  
Izyan Iryani Mohd Yazid ◽  
Saiful Amri Mazlan ◽  
Takehito Kikuchi ◽  
Hairi Zamzuri

This paper presents performance comparison of Magnetorheological (MR) damper with two different coil arrangements. Two coils at different location have been introduced that could enhance the activation areas in the MR damper. The experimental tests were conducted in three different conditions of coil; internal coils, external coils and the combination of coils. For each trial, the effect of the applied current and the condition of coils were analyzed and investigated. The results showed that the internal coil could produce higher damping force than the external coil, and the combination of internal and external coils could increase the damping force up to 125 N for the same experimental parameters.


2020 ◽  
Vol 10 (12) ◽  
pp. 4099
Author(s):  
Quoc-Duy Bui ◽  
Quoc Hung Nguyen ◽  
Tan Tien Nguyen ◽  
Duc-Dai Mai

Magnetorheological (MR) dampers have been widely investigated and proposed for vibration mitigation systems because they possess continuous variability of damping coefficient in response to different operating conditions. In the conventional design of MR dampers, a separate controller and power supply are required, causing an increment of complexity and cost, which are not suitable for home appliances like washing machines. To solve these issues and to reuse wasted energy from vibration of washing machines, in this study, a self-powered shear-mode MR damper, which integrates MR damping and energy-harvesting technologies into a single device, is proposed. The MR damper is composed of an inner housing, on which magnetic coils are wound directly, and an outer housing for covering and creating a closed magnetic circuit of the damper. The gap between the inner housing and the moving shaft is filled with MR fluid to produce the damping force. The energy-harvesting part consists of permanent magnets fastened together on the shaft and induction coils wound directly on slots of the housing. The induced power from the induction coils is directly applied to the excitation coils of the damping part to generate a corresponding damping force against the vibration. In order to achieve optimal geometry of the self-powered MR damper, an optimization for both the damping part and the energy harvesting part of the proposed dampers are conducted based on ANSYS finite element analysis. From optimal solutions, a prototype of the proposed damper is designed in detail, manufactured, and experimentally validated.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiao Ping ◽  
Gao Hong ◽  
Lou Jie ◽  
Wang Gang ◽  
Niu Limin

To enhance working-performance robustness of suspension, a vehicle suspension with permanent-magnet magnetic-valve magnetorheological damper (PMMVMD) was studied. Firstly, mechanical structure of traditional magnetorheological damper (MD) used in vehicle suspensions was redesigned through introducing a permanent magnet and a magnetic valve. Based on theories of electromagnetics and Bingham model, prediction model of damping force was built. On this basis, two-degree-of-freedom vehicle suspension model was established. In addition, fruit fly optimization algorithm- (FOA-) line quadratic Gaussian (LQG) control algorithm suitable for PMMVMD suspensions was designed on the basis of developing normal FOA. Finally, comparison simulation experiments and bench tests were conducted by taking white noise and a sine wave as the road surface input and the results indicated that working performance of PMMVMD suspension based on FOA-LQG control algorithm was good.


Author(s):  
Shuto Nagamatsu ◽  
Toshihiko Shiraishi

Conventional skyhook-based ON–OFF control switches the damping force on a vibration suppression target according to the sign of the product of the target and relative velocities (which is called the condition function). Here, we propose a control strategy that uses a novel condition function for improved performance. The proposed strategy is formulated based on the theory of forced vibration with base excitation. Its effect upon semi-active vibration performance is investigated via numerical simulations and experimental tests of the vibration suppression of a small structure equipped with a magnetorheological (MR) damper. In the simulations, the proposed control strategy can offer high-performance semi-active vibration suppression, even in the presence of force delays in the damper. The experiments show that the displacement response with the proposed control is lower than that with the conventional skyhook-based control over the entire frequency range; furthermore, the desired performance can be achieved when the proposed condition function is used with velocity-proportional control. The simplicity and high performance demonstrated by the proposed control strategy make it applicable to semi-active vibration suppression of practical systems, even in the presence of unavoidable force delays in controllable dampers.


Sign in / Sign up

Export Citation Format

Share Document