Localization of multiple acoustic emission events occurring closely in time in thin-walled pipes using sparse reconstruction

2018 ◽  
Vol 29 (11) ◽  
pp. 2362-2373 ◽  
Author(s):  
Brennan Dubuc ◽  
Arvin Ebrahimkhanlou ◽  
Salvatore Salamone

A sparse reconstruction approach capable of localizing multiple acoustic emission events is proposed. The approach is specifically designed for localizing events that occur closely in time, where triangulation methods can fail. To perform localization, the approach uses information contained in the entire length of acoustic emission signals and is implemented using the matching pursuit algorithm. Implementation is considered theoretically for large-diameter thin-walled pipes. The approach is validated on experimental data of simulated acoustic emission events in a thin-walled pipe. The experimental data correspond to helical guided ultrasonic waves generated by standard pencil lead breaks (Hsu-Nielsen sources) on its outer surface. The acoustic emission signals are recorded by sparsely distributed low-profile piezoelectric transducers instrumented on the outer surface. Experimental examples are presented for the failure of the triangulation method when multiple sources are present while highlighting the capabilities of the proposed technique. It is demonstrated that the approach possesses the ability of localizing multiple events occurring closely in time. An example is also presented for the localization of a more commonly encountered isolated acoustic emission event.

Vestnik MGSU ◽  
2019 ◽  
pp. 22-32
Author(s):  
Farit S. Zamaliev

Introduction. Conducted is to the evaluation of the stress-strain state of the steel-concrete beams with thin-walled section. In recent times, steel-reinforced concrete structures have become widely used in civilian buildings (beams, slabs, columns). Thin-walled section have not found wide application in steel concrete structures, unlike steel structures. Presents the results of numerical studies of beams consisting of concrete, anchors and steel beams. Two investigating of the location of anchors are given. Numerical investigations are presented of steel-concrete beams with thin-walled section based on numerical studies. Testing procedure and test result are given. Results of calculations, comparison of numerical and experimental studies are presented. Materials and methods. For full-scale experiments, steel I-beams with filling of side cavities with concrete were adopted, screws are used as anchor ties, with varied both the lengths and their location (vertically and obliquely). As steel curved C-shaped steel profiles were used steel profiles from the range of the company “Steel Faces”. ANSYS software package was used for computer modeling. A total of 16 steel concrete beams were considered, for which the results of strength and stiffness evaluation were obtained in ANSYS. Results. The data of the stress-strain state of beams on the basis of computer simulation are obtained. The results are used for the production of field samples. Data of computer simulation are compared with the indicators of field experiments. Conclusions. The stress-strain state of steel-concrete structures was studied on the basis of numerical and experimental data. The proposed calculation method gives good convergence with the experimental data. Anchor connections made from self-tapping screws can be used in studies for modeling in steel-concrete beams structures and other anchor devices, ensuring the joint operation of concrete and steel profiles in structures.


1992 ◽  
Author(s):  
B.J. Bryan ◽  
H.E. Jr. Flanders ◽  
G.B. Jr. Rawls
Keyword(s):  

InterConf ◽  
2021 ◽  
pp. 970-978
Author(s):  
Z. Nizomov ◽  
M. Asozoda ◽  
A. Olimi ◽  
A. Karimzoda

The absorption of ultrasonic waves in the frequency range from 6 to 146 MHz in aqueous solutions of sodium acetate, sodium chloride and calcium has been studied. It was found that only in solutions of calcium cations and acetate anion present simultaneously, relaxation absorption of ultrasonic waves is observed. The experimental data obtained indicate that the observed relaxation absorption of ultrasound in the studied frequency range by an aqueous solution of calcium acetate is associated with the interaction of the acetate anion with the calcium cation in the solution.


2018 ◽  
Vol 193 ◽  
pp. 02027
Author(s):  
Vladimir Sokolov ◽  
Igor Razov ◽  
Evgeniy Koynov

In the article, solutions are obtained for a thin-walled bimetallic pipeline. Solutions are obtained, and the frequencies of free oscillations are investigated taking into account the internal working pressure, the longitudinal compressive force, and the elastic foundation. The solutions were obtained on the basis of a geometrically nonlinear version of the semi-momentum theory of cylindrical shells of the middle bend. The proposed calculations can find application in the nuclear power industry, aviation, and the petrochemical industry.


2019 ◽  
Vol 7 (5) ◽  
pp. 134 ◽  
Author(s):  
Rui He ◽  
Ji Ji ◽  
Jisheng Zhang ◽  
Wei Peng ◽  
Zufeng Sun ◽  
...  

With the development of offshore wind energy in China, more and more offshore wind turbines are being constructed in rock-based sea areas. However, the large diameter and thin-walled steel rock-socketed monopiles are very scarce at present, and both the construction and design are very difficult. For the design, the dynamic safety during the whole lifetime of the wind turbine is difficult to guarantee. Dynamic safety of a turbine is mostly controlled by the dynamic impedances of the rock-socketed monopile, which are still not well understood. How to choose the appropriate impedances of the socketed monopiles so that the wind turbines will neither resonant nor be too conservative is the main problem. Based on a numerical model in this study, the accurate impedances are obtained for different frequencies of excitation, different soil and rock parameters, and different rock-socketed lengths. The dynamic stiffness of monopile increases, while the radiative damping decreases as rock-socketed depth increases. When the weathering degree of rock increases, the dynamic stiffness of the monopile decreases, while the radiative damping increases.


Sign in / Sign up

Export Citation Format

Share Document